Coverage for /builds/kinetik161/ase/ase/utils/linesearcharmijo.py: 61.39%
158 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1# flake8: noqa
2import logging
3import math
5import numpy as np
7# CO <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
8try:
9 import scipy
10 import scipy.linalg
11 have_scipy = True
12except ImportError:
13 have_scipy = False
14# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
16from ase.utils import longsum
18logger = logging.getLogger(__name__)
20# CO <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
23class LinearPath:
24 """Describes a linear search path of the form t -> t g
25 """
27 def __init__(self, dirn):
28 """Initialise LinearPath object
30 Args:
31 dirn : search direction
32 """
33 self.dirn = dirn
35 def step(self, alpha):
36 return alpha * self.dirn
39def nullspace(A, myeps=1e-10):
40 """The RumPath class needs the ability to compute the null-space of
41 a small matrix. This is provided here. But we now also need scipy!
43 This routine was copy-pasted from
44 http://stackoverflow.com/questions/5889142/python-numpy-scipy-finding-the-null-space-of-a-matrix
45 How the h*** does numpy/scipy not have a null-space implemented?
46 """
47 u, s, vh = scipy.linalg.svd(A)
48 padding = max(0, np.shape(A)[1] - np.shape(s)[0])
49 null_mask = np.concatenate(((s <= myeps),
50 np.ones((padding,), dtype=bool)),
51 axis=0)
52 null_space = scipy.compress(null_mask, vh, axis=0)
53 return scipy.transpose(null_space)
56class RumPath:
57 """Describes a curved search path, taking into account information
58 about (near-) rigid unit motions (RUMs).
60 One can tag sub-molecules of the system, which are collections of
61 particles that form a (near-)rigid unit. Let x1, ... xn be the positions
62 of one such molecule, then we construct a path of the form
63 xi(t) = xi(0) + (exp(K t) - I) yi + t wi + t c
64 where yi = xi - <x>, c = <g> is a rigid translation, K is anti-symmetric
65 so that exp(tK) yi denotes a rotation about the centre of mass, and wi
66 is the remainind stretch of the molecule.
68 The following variables are stored:
69 * rotation_factors : array of acceleration factors
70 * rigid_units : array of molecule indices
71 * stretch : w
72 * K : list of K matrices
73 * y : list of y-vectors
74 """
76 def __init__(self, x_start, dirn, rigid_units, rotation_factors):
77 """Initialise a `RumPath`
79 Args:
80 x_start : vector containing the positions in d x nAt shape
81 dirn : search direction, same shape as x_start vector
82 rigid_units : array of arrays of molecule indices
83 rotation_factors : factor by which the rotation of each molecular
84 is accelerated; array of scalars, same length as
85 rigid_units
86 """
88 if not have_scipy:
89 raise RuntimeError(
90 "RumPath depends on scipy, which could not be imported")
92 # keep some stuff stored
93 self.rotation_factors = rotation_factors
94 self.rigid_units = rigid_units
95 # create storage for more stuff
96 self.K = []
97 self.y = []
98 # We need to reshape x_start and dirn since we want to apply
99 # rotations to individual position vectors!
100 # we will eventually store the stretch in w, X is just a reference
101 # to x_start with different shape
102 w = dirn.copy().reshape([3, len(dirn) / 3])
103 X = x_start.reshape([3, len(dirn) / 3])
105 for I in rigid_units: # I is a list of indices for one molecule
106 # get the positions of the i-th molecule, subtract mean
107 x = X[:, I]
108 y = x - x.mean(0).T # PBC?
109 # same for forces >>> translation component
110 g = w[:, I]
111 f = g - g.mean(0).T
112 # compute the system to solve for K (see accompanying note!)
113 # A = \sum_j Yj Yj'
114 # b = \sum_j Yj' fj
115 A = np.zeros((3, 3))
116 b = np.zeros(3)
117 for j in range(len(I)):
118 Yj = np.array([[y[1, j], 0.0, -y[2, j]],
119 [-y[0, j], y[2, j], 0.0],
120 [0.0, -y[1, j], y[0, j]]])
121 A += np.dot(Yj.T, Yj)
122 b += np.dot(Yj.T, f[:, j])
123 # If the directions y[:,j] span all of R^3 (canonically this is true
124 # when there are at least three atoms in the molecule) but if
125 # not, then A is singular so we cannot solve A k = b. In this case
126 # we solve Ak = b in the space orthogonal to the null-space of A.
127 # TODO:
128 # this can get unstable if A is "near-singular"! We may
129 # need to revisit this idea at some point to get something
130 # more robust
131 N = nullspace(A)
132 b -= np.dot(np.dot(N, N.T), b)
133 A += np.dot(N, N.T)
134 k = scipy.linalg.solve(A, b, sym_pos=True)
135 K = np.array([[0.0, k[0], -k[2]],
136 [-k[0], 0.0, k[1]],
137 [k[2], -k[1], 0.0]])
138 # now remove the rotational component from the search direction
139 # ( we actually keep the translational component as part of w,
140 # but this could be changed as well! )
141 w[:, I] -= np.dot(K, y)
142 # store K and y
143 self.K.append(K)
144 self.y.append(y)
146 # store the stretch (no need to copy here, since w is already a copy)
147 self.stretch = w
149 def step(self, alpha):
150 """perform a step in the line-search, given a step-length alpha
152 Args:
153 alpha : step-length
155 Returns:
156 s : update for positions
157 """
158 # translation and stretch
159 s = alpha * self.stretch
160 # loop through rigid_units
161 for (I, K, y, rf) in zip(self.rigid_units, self.K, self.y,
162 self.rotation_factors):
163 # with matrix exponentials:
164 # s[:, I] += expm(K * alpha * rf) * p.y - p.y
165 # third-order taylor approximation:
166 # I + t K + 1/2 t^2 K^2 + 1/6 t^3 K^3 - I
167 # = t K (I + 1/2 t K (I + 1/3 t K))
168 aK = alpha * rf * K
169 s[:, I] += np.dot(aK, y + 0.5 * np.dot(aK,
170 y + 1 / 3. * np.dot(aK, y)))
172 return s.ravel()
173# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
176class LineSearchArmijo:
178 def __init__(self, func, c1=0.1, tol=1e-14):
179 """Initialise the linesearch with set parameters and functions.
181 Args:
182 func: the function we are trying to minimise (energy), which should
183 take an array of positions for its argument
184 c1: parameter for the sufficient decrease condition in (0.0 0.5)
185 tol: tolerance for evaluating equality
187 """
189 self.tol = tol
190 self.func = func
192 if not (0 < c1 < 0.5):
193 logger.error("c1 outside of allowed interval (0, 0.5). Replacing with "
194 "default value.")
195 print("Warning: C1 outside of allowed interval. Replacing with "
196 "default value.")
197 c1 = 0.1
199 self.c1 = c1
201 # CO : added rigid_units and rotation_factors
203 def run(self, x_start, dirn, a_max=None, a_min=None, a1=None,
204 func_start=None, func_old=None, func_prime_start=None,
205 rigid_units=None, rotation_factors=None, maxstep=None):
206 """Perform a backtracking / quadratic-interpolation linesearch
207 to find an appropriate step length with Armijo condition.
208 NOTE THIS LINESEARCH DOES NOT IMPOSE WOLFE CONDITIONS!
210 The idea is to do backtracking via quadratic interpolation, stabilised
211 by putting a lower bound on the decrease at each linesearch step.
212 To ensure BFGS-behaviour, whenever "reasonable" we take 1.0 as the
213 starting step.
215 Since Armijo does not guarantee convergence of BFGS, the outer
216 BFGS algorithm must restart when the current search direction
217 ceases to be a descent direction.
219 Args:
220 x_start: vector containing the position to begin the linesearch
221 from (ie the current location of the optimisation)
222 dirn: vector pointing in the direction to search in (pk in [NW]).
223 Note that this does not have to be a unit vector, but the
224 function will return a value scaled with respect to dirn.
225 a_max: an upper bound on the maximum step length allowed. Default is 2.0.
226 a_min: a lower bound on the minimum step length allowed. Default is 1e-10.
227 A RuntimeError is raised if this bound is violated
228 during the line search.
229 a1: the initial guess for an acceptable step length. If no value is
230 given, this will be set automatically, using quadratic
231 interpolation using func_old, or "rounded" to 1.0 if the
232 initial guess lies near 1.0. (specifically for LBFGS)
233 func_start: the value of func at the start of the linesearch, ie
234 phi(0). Passing this information avoids potentially expensive
235 re-calculations
236 func_prime_start: the value of func_prime at the start of the
237 linesearch (this will be dotted with dirn to find phi_prime(0))
238 func_old: the value of func_start at the previous step taken in
239 the optimisation (this will be used to calculate the initial
240 guess for the step length if it is not provided)
241 rigid_units, rotationfactors : see documentation of RumPath, if it is
242 unclear what these parameters are, then leave them at None
243 maxstep: maximum allowed displacement in Angstrom. Default is 0.2.
245 Returns:
246 A tuple: (step, func_val, no_update)
248 step: the final chosen step length, representing the number of
249 multiples of the direction vector to move
250 func_val: the value of func after taking this step, ie phi(step)
251 no_update: true if the linesearch has not performed any updates of
252 phi or alpha, due to errors or immediate convergence
254 Raises:
255 ValueError for problems with arguments
256 RuntimeError for problems encountered during iteration
257 """
259 a1 = self.handle_args(x_start, dirn, a_max, a_min, a1, func_start,
260 func_old, func_prime_start, maxstep)
262 # DEBUG
263 logger.debug("a1(auto) = %e", a1)
265 if abs(a1 - 1.0) <= 0.5:
266 a1 = 1.0
268 logger.debug("-----------NEW LINESEARCH STARTED---------")
270 a_final = None
271 phi_a_final = None
272 num_iter = 0
274 # CO <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
275 # create a search-path
276 if rigid_units is None:
277 # standard linear search-path
278 logger.debug("-----using LinearPath-----")
279 path = LinearPath(dirn)
280 else:
281 logger.debug("-----using RumPath------")
282 # if rigid_units != None, but rotation_factors == None, then
283 # raise an error.
284 if rotation_factors == None:
285 raise RuntimeError(
286 'RumPath cannot be created since rotation_factors == None')
287 path = RumPath(x_start, dirn, rigid_units, rotation_factors)
288 # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
290 while (True):
292 logger.debug("-----------NEW ITERATION OF LINESEARCH----------")
293 logger.debug("Number of linesearch iterations: %d", num_iter)
294 logger.debug("a1 = %e", a1)
296 # CO replaced: func_a1 = self.func(x_start + a1 * self.dirn)
297 func_a1 = self.func(x_start + path.step(a1))
298 phi_a1 = func_a1
299 # compute sufficient decrease (Armijo) condition
300 suff_dec = (phi_a1 <= self.func_start +
301 self.c1 * a1 * self.phi_prime_start)
303 # DEBUG
304 # print("c1*a1*phi_prime_start = ", self.c1*a1*self.phi_prime_start,
305 # " | phi_a1 - phi_0 = ", phi_a1 - self.func_start)
306 logger.info("a1 = %.3f, suff_dec = %r", a1, suff_dec)
307 if a1 < self.a_min:
308 raise RuntimeError('a1 < a_min, giving up')
309 if self.phi_prime_start > 0.0:
310 raise RuntimeError("self.phi_prime_start > 0.0")
312 # check sufficient decrease (Armijo condition)
313 if suff_dec:
314 a_final = a1
315 phi_a_final = phi_a1
316 logger.debug("Linesearch returned a = %e, phi_a = %e",
317 a_final, phi_a_final)
318 logger.debug("-----------LINESEARCH COMPLETE-----------")
319 return a_final, phi_a_final, num_iter == 0
321 # we don't have sufficient decrease, so we need to compute a
322 # new trial step-length
323 at = - ((self.phi_prime_start * a1) /
324 (2 * ((phi_a1 - self.func_start) / a1 - self.phi_prime_start)))
325 logger.debug("quadratic_min: initial at = %e", at)
327 # because a1 does not satisfy Armijo it follows that at must
328 # lie between 0 and a1. In fact, more strongly,
329 # at \leq (2 (1-c1))^{-1} a1, which is a back-tracking condition
330 # therefore, we should now only check that at has not become too small,
331 # in which case it is likely that nonlinearity has played a big role
332 # here, so we take an ultra-conservative backtracking step
333 a1 = max(at, a1 / 10.0)
334 if a1 > at:
335 logger.debug(
336 "at (%e) < a1/10: revert to backtracking a1/10", at)
338 # (end of while(True) line-search loop)
339 # (end of run())
341 def handle_args(self, x_start, dirn, a_max, a_min, a1, func_start, func_old,
342 func_prime_start, maxstep):
343 """Verify passed parameters and set appropriate attributes accordingly.
345 A suitable value for the initial step-length guess will be either
346 verified or calculated, stored in the attribute self.a_start, and
347 returned.
349 Args:
350 The args should be identical to those of self.run().
352 Returns:
353 The suitable initial step-length guess a_start
355 Raises:
356 ValueError for problems with arguments
358 """
360 self.a_max = a_max
361 self.a_min = a_min
362 self.x_start = x_start
363 self.dirn = dirn
364 self.func_old = func_old
365 self.func_start = func_start
366 self.func_prime_start = func_prime_start
368 if a_max is None:
369 a_max = 2.0
371 if a_max < self.tol:
372 logger.warning("a_max too small relative to tol. Reverting to "
373 "default value a_max = 2.0 (twice the <ideal> step).")
374 a_max = 2.0 # THIS ASSUMES NEWTON/BFGS TYPE BEHAVIOUR!
376 if self.a_min is None:
377 self.a_min = 1e-10
379 if func_start is None:
380 logger.debug("Setting func_start")
381 self.func_start = self.func(x_start)
383 self.phi_prime_start = longsum(self.func_prime_start * self.dirn)
384 if self.phi_prime_start >= 0:
385 logger.error(
386 "Passed direction which is not downhill. Aborting...: %e",
387 self.phi_prime_start
388 )
389 raise ValueError("Direction is not downhill.")
390 elif math.isinf(self.phi_prime_start):
391 logger.error("Passed func_prime_start and dirn which are too big. "
392 "Aborting...")
393 raise ValueError("func_prime_start and dirn are too big.")
395 if a1 is None:
396 if func_old is not None:
397 # Interpolating a quadratic to func and func_old - see NW
398 # equation 3.60
399 a1 = 2 * (self.func_start - self.func_old) / \
400 self.phi_prime_start
401 logger.debug("Interpolated quadratic, obtained a1 = %e", a1)
402 if a1 is None or a1 > a_max:
403 logger.debug("a1 greater than a_max. Reverting to default value "
404 "a1 = 1.0")
405 a1 = 1.0
406 if a1 is None or a1 < self.tol:
407 logger.debug("a1 is None or a1 < self.tol. Reverting to default value "
408 "a1 = 1.0")
409 a1 = 1.0
410 if a1 is None or a1 < self.a_min:
411 logger.debug("a1 is None or a1 < a_min. Reverting to default value "
412 "a1 = 1.0")
413 a1 = 1.0
415 if maxstep is None:
416 maxstep = 0.2
417 logger.debug("maxstep = %e", maxstep)
419 r = np.reshape(dirn, (-1, 3))
420 steplengths = ((a1 * r)**2).sum(1)**0.5
421 maxsteplength = np.max(steplengths)
422 if maxsteplength >= maxstep:
423 a1 *= maxstep / maxsteplength
424 logger.debug("Rescaled a1 to fulfill maxstep criterion")
426 self.a_start = a1
428 logger.debug("phi_start = %e, phi_prime_start = %e", self.func_start,
429 self.phi_prime_start)
430 logger.debug("func_start = %s, self.func_old = %s", self.func_start,
431 self.func_old)
432 logger.debug("a1 = %e, a_max = %e, a_min = %e", a1, a_max, self.a_min)
434 return a1