Coverage for /builds/kinetik161/ase/ase/ga/cutandsplicepairing.py: 90.19%
214 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1"""Implementation of the cut-and-splice paring operator."""
2import numpy as np
4from ase import Atoms
5from ase.ga.offspring_creator import OffspringCreator
6from ase.ga.utilities import (atoms_too_close, atoms_too_close_two_sets,
7 gather_atoms_by_tag)
8from ase.geometry import find_mic
11class Positions:
12 """Helper object to simplify the pairing process.
14 Parameters:
16 scaled_positions: (Nx3) array
17 Positions in scaled coordinates
18 cop: (1x3) array
19 Center-of-positions (also in scaled coordinates)
20 symbols: str
21 String with the atomic symbols
22 distance: float
23 Signed distance to the cutting plane
24 origin: int (0 or 1)
25 Determines at which side of the plane the position should be.
26 """
28 def __init__(self, scaled_positions, cop, symbols, distance, origin):
29 self.scaled_positions = scaled_positions
30 self.cop = cop
31 self.symbols = symbols
32 self.distance = distance
33 self.origin = origin
35 def to_use(self):
36 """Tells whether this position is at the right side."""
37 if self.distance > 0. and self.origin == 0:
38 return True
39 elif self.distance < 0. and self.origin == 1:
40 return True
41 else:
42 return False
45class CutAndSplicePairing(OffspringCreator):
46 """The Cut and Splice operator by Deaven and Ho.
48 Creates offspring from two parent structures using
49 a randomly generated cutting plane.
51 The parents may have different unit cells, in which
52 case the offspring unit cell will be a random combination
53 of the parent cells.
55 The basic implementation (for fixed unit cells) is
56 described in:
58 :doi:`L.B. Vilhelmsen and B. Hammer, PRL, 108, 126101 (2012)
59 <10.1103/PhysRevLett.108.126101`>
61 The extension to variable unit cells is similar to:
63 * :doi:`Glass, Oganov, Hansen, Comp. Phys. Comm. 175 (2006) 713-720
64 <10.1016/j.cpc.2006.07.020>`
66 * :doi:`Lonie, Zurek, Comp. Phys. Comm. 182 (2011) 372-387
67 <10.1016/j.cpc.2010.07.048>`
69 The operator can furthermore preserve molecular identity
70 if desired (see the *use_tags* kwarg). Atoms with the same
71 tag will then be considered as belonging to the same molecule,
72 and their internal geometry will not be changed by the operator.
74 If use_tags is enabled, the operator will also conserve the
75 number of molecules of each kind (in addition to conserving
76 the overall stoichiometry). Currently, molecules are considered
77 to be of the same kind if their chemical symbol strings are
78 identical. In rare cases where this may not be sufficient
79 (i.e. when desiring to keep the same ratio of isomers), the
80 different isomers can be differentiated by giving them different
81 elemental orderings (e.g. 'XY2' and 'Y2X').
83 Parameters:
85 slab: Atoms object
86 Specifies the cell vectors and periodic boundary conditions
87 to be applied to the randomly generated structures.
88 Any included atoms (e.g. representing an underlying slab)
89 are copied to these new structures.
91 n_top: int
92 The number of atoms to optimize
94 blmin: dict
95 Dictionary with minimal interatomic distances.
96 Note: when preserving molecular identity (see use_tags),
97 the blmin dict will (naturally) only be applied
98 to intermolecular distances (not the intramolecular
99 ones).
101 number_of_variable_cell_vectors: int (default 0)
102 The number of variable cell vectors (0, 1, 2 or 3).
103 To keep things simple, it is the 'first' vectors which
104 will be treated as variable, i.e. the 'a' vector in the
105 univariate case, the 'a' and 'b' vectors in the bivariate
106 case, etc.
108 p1: float or int between 0 and 1
109 Probability that a parent is shifted over a random
110 distance along the normal of the cutting plane
111 (only operative if number_of_variable_cell_vectors > 0).
113 p2: float or int between 0 and 1
114 Same as p1, but for shifting along the directions
115 in the cutting plane (only operative if
116 number_of_variable_cell_vectors > 0).
118 minfrac: float between 0 and 1, or None (default)
119 Minimal fraction of atoms a parent must contribute
120 to the child. If None, each parent must contribute
121 at least one atom.
123 cellbounds: ase.ga.utilities.CellBounds instance
124 Describing limits on the cell shape, see
125 :class:`~ase.ga.utilities.CellBounds`.
126 Note that it only make sense to impose conditions
127 regarding cell vectors which have been marked as
128 variable (see number_of_variable_cell_vectors).
130 use_tags: bool
131 Whether to use the atomic tags to preserve
132 molecular identity.
134 test_dist_to_slab: bool (default True)
135 Whether to make sure that the distances between
136 the atoms and the slab satisfy the blmin.
138 rng: Random number generator
139 By default numpy.random.
140 """
142 def __init__(self, slab, n_top, blmin, number_of_variable_cell_vectors=0,
143 p1=1, p2=0.05, minfrac=None, cellbounds=None,
144 test_dist_to_slab=True, use_tags=False, rng=np.random,
145 verbose=False):
147 OffspringCreator.__init__(self, verbose, rng=rng)
148 self.slab = slab
149 self.n_top = n_top
150 self.blmin = blmin
151 assert number_of_variable_cell_vectors in range(4)
152 self.number_of_variable_cell_vectors = number_of_variable_cell_vectors
153 self.p1 = p1
154 self.p2 = p2
155 self.minfrac = minfrac
156 self.cellbounds = cellbounds
157 self.test_dist_to_slab = test_dist_to_slab
158 self.use_tags = use_tags
160 self.scaling_volume = None
161 self.descriptor = 'CutAndSplicePairing'
162 self.min_inputs = 2
164 def update_scaling_volume(self, population, w_adapt=0.5, n_adapt=0):
165 """Updates the scaling volume that is used in the pairing
167 w_adapt: weight of the new vs the old scaling volume
168 n_adapt: number of best candidates in the population that
169 are used to calculate the new scaling volume
170 """
171 if not n_adapt:
172 # take best 20% of the population
173 n_adapt = int(np.ceil(0.2 * len(population)))
174 v_new = np.mean([a.get_volume() for a in population[:n_adapt]])
176 if not self.scaling_volume:
177 self.scaling_volume = v_new
178 else:
179 volumes = [self.scaling_volume, v_new]
180 weights = [1 - w_adapt, w_adapt]
181 self.scaling_volume = np.average(volumes, weights=weights)
183 def get_new_individual(self, parents):
184 """The method called by the user that
185 returns the paired structure."""
186 f, m = parents
188 indi = self.cross(f, m)
189 desc = 'pairing: {} {}'.format(f.info['confid'],
190 m.info['confid'])
191 # It is ok for an operator to return None
192 # It means that it could not make a legal offspring
193 # within a reasonable amount of time
194 if indi is None:
195 return indi, desc
196 indi = self.initialize_individual(f, indi)
197 indi.info['data']['parents'] = [f.info['confid'],
198 m.info['confid']]
200 return self.finalize_individual(indi), desc
202 def cross(self, a1, a2):
203 """Crosses the two atoms objects and returns one"""
205 if len(a1) != len(self.slab) + self.n_top:
206 raise ValueError('Wrong size of structure to optimize')
207 if len(a1) != len(a2):
208 raise ValueError('The two structures do not have the same length')
210 N = self.n_top
212 # Only consider the atoms to optimize
213 a1 = a1[len(a1) - N: len(a1)]
214 a2 = a2[len(a2) - N: len(a2)]
216 if not np.array_equal(a1.numbers, a2.numbers):
217 err = 'Trying to pair two structures with different stoichiometry'
218 raise ValueError(err)
220 if self.use_tags and not np.array_equal(a1.get_tags(), a2.get_tags()):
221 err = 'Trying to pair two structures with different tags'
222 raise ValueError(err)
224 cell1 = a1.get_cell()
225 cell2 = a2.get_cell()
226 for i in range(self.number_of_variable_cell_vectors, 3):
227 err = 'Unit cells are supposed to be identical in direction %d'
228 assert np.allclose(cell1[i], cell2[i]), (err % i, cell1, cell2)
230 invalid = True
231 counter = 0
232 maxcount = 1000
233 a1_copy = a1.copy()
234 a2_copy = a2.copy()
236 # Run until a valid pairing is made or maxcount pairings are tested.
237 while invalid and counter < maxcount:
238 counter += 1
240 newcell = self.generate_unit_cell(cell1, cell2)
241 if newcell is None:
242 # No valid unit cell could be generated.
243 # This strongly suggests that it is near-impossible
244 # to generate one from these parent cells and it is
245 # better to abort now.
246 break
248 # Choose direction of cutting plane normal
249 if self.number_of_variable_cell_vectors == 0:
250 # Will be generated entirely at random
251 theta = np.pi * self.rng.random()
252 phi = 2. * np.pi * self.rng.random()
253 cut_n = np.array([np.cos(phi) * np.sin(theta),
254 np.sin(phi) * np.sin(theta), np.cos(theta)])
255 else:
256 # Pick one of the 'variable' cell vectors
257 cut_n = self.rng.choice(self.number_of_variable_cell_vectors)
259 # Randomly translate parent structures
260 for a_copy, a in zip([a1_copy, a2_copy], [a1, a2]):
261 a_copy.set_positions(a.get_positions())
263 cell = a_copy.get_cell()
264 for i in range(self.number_of_variable_cell_vectors):
265 r = self.rng.random()
266 cond1 = i == cut_n and r < self.p1
267 cond2 = i != cut_n and r < self.p2
268 if cond1 or cond2:
269 a_copy.positions += self.rng.random() * cell[i]
271 if self.use_tags:
272 # For correct determination of the center-
273 # of-position of the multi-atom blocks,
274 # we need to group their constituent atoms
275 # together
276 gather_atoms_by_tag(a_copy)
277 else:
278 a_copy.wrap()
280 # Generate the cutting point in scaled coordinates
281 cosp1 = np.average(a1_copy.get_scaled_positions(), axis=0)
282 cosp2 = np.average(a2_copy.get_scaled_positions(), axis=0)
283 cut_p = np.zeros((1, 3))
284 for i in range(3):
285 if i < self.number_of_variable_cell_vectors:
286 cut_p[0, i] = self.rng.random()
287 else:
288 cut_p[0, i] = 0.5 * (cosp1[i] + cosp2[i])
290 # Perform the pairing:
291 child = self._get_pairing(a1_copy, a2_copy, cut_p, cut_n, newcell)
292 if child is None:
293 continue
295 # Verify whether the atoms are too close or not:
296 if atoms_too_close(child, self.blmin, use_tags=self.use_tags):
297 continue
299 if self.test_dist_to_slab and len(self.slab) > 0:
300 if atoms_too_close_two_sets(self.slab, child, self.blmin):
301 continue
303 # Passed all the tests
304 child = self.slab + child
305 child.set_cell(newcell, scale_atoms=False)
306 child.wrap()
307 return child
309 return None
311 def generate_unit_cell(self, cell1, cell2, maxcount=10000):
312 """Generates a new unit cell by a random linear combination
313 of the parent cells. The new cell must satisfy the
314 self.cellbounds constraints. Returns None if no such cell
315 was generated within a given number of attempts.
317 Parameters:
319 maxcount: int
320 The maximal number of attempts.
321 """
322 # First calculate the scaling volume
323 if not self.scaling_volume:
324 v1 = np.abs(np.linalg.det(cell1))
325 v2 = np.abs(np.linalg.det(cell2))
326 r = self.rng.random()
327 v_ref = r * v1 + (1 - r) * v2
328 else:
329 v_ref = self.scaling_volume
331 # Now the cell vectors
332 if self.number_of_variable_cell_vectors == 0:
333 assert np.allclose(cell1, cell2), 'Parent cells are not the same'
334 newcell = np.copy(cell1)
335 else:
336 count = 0
337 while count < maxcount:
338 r = self.rng.random()
339 newcell = r * cell1 + (1 - r) * cell2
341 vol = abs(np.linalg.det(newcell))
342 scaling = v_ref / vol
343 scaling **= 1. / self.number_of_variable_cell_vectors
344 newcell[:self.number_of_variable_cell_vectors] *= scaling
346 found = True
347 if self.cellbounds is not None:
348 found = self.cellbounds.is_within_bounds(newcell)
349 if found:
350 break
352 count += 1
353 else:
354 # Did not find acceptable cell
355 newcell = None
357 return newcell
359 def _get_pairing(self, a1, a2, cutting_point, cutting_normal, cell):
360 """Creates a child from two parents using the given cut.
362 Returns None if the generated structure does not contain
363 a large enough fraction of each parent (see self.minfrac).
365 Does not check whether atoms are too close.
367 Assumes the 'slab' parts have been removed from the parent
368 structures and that these have been checked for equal
369 lengths, stoichiometries, and tags (if self.use_tags).
371 Parameters:
373 cutting_normal: int or (1x3) array
375 cutting_point: (1x3) array
376 In fractional coordinates
378 cell: (3x3) array
379 The unit cell for the child structure
380 """
381 symbols = a1.get_chemical_symbols()
382 tags = a1.get_tags() if self.use_tags else np.arange(len(a1))
384 # Generate list of all atoms / atom groups:
385 p1, p2, sym = [], [], []
386 for i in np.unique(tags):
387 indices = np.where(tags == i)[0]
388 s = ''.join([symbols[j] for j in indices])
389 sym.append(s)
391 for i, (a, p) in enumerate(zip([a1, a2], [p1, p2])):
392 c = a.get_cell()
393 cop = np.mean(a.positions[indices], axis=0)
394 cut_p = np.dot(cutting_point, c)
395 if isinstance(cutting_normal, int):
396 vecs = [c[j] for j in range(3) if j != cutting_normal]
397 cut_n = np.cross(vecs[0], vecs[1])
398 else:
399 cut_n = np.dot(cutting_normal, c)
400 d = np.dot(cop - cut_p, cut_n)
401 spos = a.get_scaled_positions()[indices]
402 scop = np.mean(spos, axis=0)
403 p.append(Positions(spos, scop, s, d, i))
405 all_points = p1 + p2
406 unique_sym = np.unique(sym)
407 types = {s: sym.count(s) for s in unique_sym}
409 # Sort these by chemical symbols:
410 all_points.sort(key=lambda x: x.symbols, reverse=True)
412 # For each atom type make the pairing
413 unique_sym.sort()
414 use_total = {}
415 for s in unique_sym:
416 used = []
417 not_used = []
418 # The list is looked trough in
419 # reverse order so atoms can be removed
420 # from the list along the way.
421 for i in reversed(range(len(all_points))):
422 # If there are no more atoms of this type
423 if all_points[i].symbols != s:
424 break
425 # Check if the atom should be included
426 if all_points[i].to_use():
427 used.append(all_points.pop(i))
428 else:
429 not_used.append(all_points.pop(i))
431 assert len(used) + len(not_used) == types[s] * 2
433 # While we have too few of the given atom type
434 while len(used) < types[s]:
435 index = self.rng.randint(len(not_used))
436 used.append(not_used.pop(index))
438 # While we have too many of the given atom type
439 while len(used) > types[s]:
440 # remove randomly:
441 index = self.rng.randint(len(used))
442 not_used.append(used.pop(index))
444 use_total[s] = used
446 n_tot = sum([len(ll) for ll in use_total.values()])
447 assert n_tot == len(sym)
449 # check if the generated structure contains
450 # atoms from both parents:
451 count1, count2, N = 0, 0, len(a1)
452 for x in use_total.values():
453 count1 += sum([y.origin == 0 for y in x])
454 count2 += sum([y.origin == 1 for y in x])
456 nmin = 1 if self.minfrac is None else int(round(self.minfrac * N))
457 if count1 < nmin or count2 < nmin:
458 return None
460 # Construct the cartesian positions and reorder the atoms
461 # to follow the original order
462 newpos = []
463 pbc = a1.get_pbc()
464 for s in sym:
465 p = use_total[s].pop()
466 c = a1.get_cell() if p.origin == 0 else a2.get_cell()
467 pos = np.dot(p.scaled_positions, c)
468 cop = np.dot(p.cop, c)
469 vectors, lengths = find_mic(pos - cop, c, pbc)
470 newcop = np.dot(p.cop, cell)
471 pos = newcop + vectors
472 for row in pos:
473 newpos.append(row)
475 newpos = np.reshape(newpos, (N, 3))
476 num = a1.get_atomic_numbers()
477 child = Atoms(numbers=num, positions=newpos, pbc=pbc, cell=cell,
478 tags=tags)
479 child.wrap()
480 return child