Coverage for /builds/kinetik161/ase/ase/ga/ofp_comparator.py: 49.68%
310 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1from itertools import combinations_with_replacement
2from math import erf
4import matplotlib.pyplot as plt
5import numpy as np
6from scipy.spatial.distance import cdist
8from ase.neighborlist import NeighborList
9from ase.utils import pbc2pbc
12class OFPComparator:
13 """Implementation of comparison using Oganov's fingerprint (OFP)
14 functions, based on:
16 * :doi:`Oganov, Valle, J. Chem. Phys. 130, 104504 (2009)
17 <10.1063/1.3079326>`
19 * :doi:`Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632
20 <10.1016/j.cpc.2010.06.007>`
22 Parameters:
24 n_top: int or None
25 The number of atoms to optimize (None = include all).
27 dE: float
28 Energy difference above which two structures are
29 automatically considered to be different. (Default 1 eV)
31 cos_dist_max: float
32 Maximal cosine distance between two structures in
33 order to be still considered the same structure. Default 5e-3
35 rcut: float
36 Cutoff radius in Angstrom for the fingerprints.
37 (Default 20 Angstrom)
39 binwidth: float
40 Width in Angstrom of the bins over which the fingerprints
41 are discretized. (Default 0.05 Angstrom)
43 pbc: list of three booleans or None
44 Specifies whether to apply periodic boundary conditions
45 along each of the three unit cell vectors when calculating
46 the fingerprint. The default (None) is to apply PBCs in all
47 3 directions.
49 Note: for isolated systems (pbc = [False, False, False]),
50 the pair correlation function itself is always short-ranged
51 (decays to zero beyond a certain radius), so unity is not
52 subtracted for calculating the fingerprint. Also the
53 volume normalization disappears.
55 maxdims: list of three floats or None
56 If PBCs in only 1 or 2 dimensions are specified, the
57 maximal thicknesses along the non-periodic directions can
58 be specified here (the values given for the periodic
59 directions will not be used). If set to None (the
60 default), the length of the cell vector along the
61 non-periodic direction is used.
63 Note: in this implementation, the cell vectors are
64 assumed to be orthogonal.
66 sigma: float
67 Standard deviation of the gaussian smearing to be applied
68 in the calculation of the fingerprints (in
69 Angstrom). Default 0.02 Angstrom.
71 nsigma: int
72 Distance (as the number of standard deviations sigma) at
73 which the gaussian smearing is cut off (i.e. no smearing
74 beyond that distance). (Default 4)
76 recalculate: boolean
77 If True, ignores the fingerprints stored in
78 atoms.info and recalculates them. (Default False)
80 """
82 def __init__(self, n_top=None, dE=1.0, cos_dist_max=5e-3, rcut=20.,
83 binwidth=0.05, sigma=0.02, nsigma=4, pbc=True,
84 maxdims=None, recalculate=False):
85 self.n_top = n_top or 0
86 self.dE = dE
87 self.cos_dist_max = cos_dist_max
88 self.rcut = rcut
89 self.binwidth = binwidth
90 self.pbc = pbc2pbc(pbc)
92 if maxdims is None:
93 self.maxdims = [None] * 3
94 else:
95 self.maxdims = maxdims
97 self.sigma = sigma
98 self.nsigma = nsigma
99 self.recalculate = recalculate
100 self.dimensions = self.pbc.sum()
102 if self.dimensions == 1 or self.dimensions == 2:
103 for direction in range(3):
104 if not self.pbc[direction]:
105 if self.maxdims[direction] is not None:
106 if self.maxdims[direction] <= 0:
107 e = '''If a max thickness is specificed in maxdims
108 for a non-periodic direction, it has to be
109 strictly positive.'''
110 raise ValueError(e)
112 def looks_like(self, a1, a2):
113 """ Return if structure a1 or a2 are similar or not. """
114 if len(a1) != len(a2):
115 raise Exception('The two configurations are not the same size.')
117 # first we check the energy criteria
118 if a1.calc is not None and a2.calc is not None:
119 dE = abs(a1.get_potential_energy() - a2.get_potential_energy())
120 if dE >= self.dE:
121 return False
123 # then we check the structure
124 cos_dist = self._compare_structure(a1, a2)
125 verdict = cos_dist < self.cos_dist_max
126 return verdict
128 def _json_encode(self, fingerprints, typedic):
129 """ json does not accept tuples nor integers as dict keys,
130 so in order to write the fingerprints to atoms.info, we need
131 to convert them to strings """
132 fingerprints_encoded = {}
133 for key, val in fingerprints.items():
134 try:
135 newkey = "_".join(map(str, list(key)))
136 except TypeError:
137 newkey = str(key)
138 if isinstance(val, dict):
139 fingerprints_encoded[newkey] = {}
140 for key2, val2 in val.items():
141 fingerprints_encoded[newkey][str(key2)] = val2
142 else:
143 fingerprints_encoded[newkey] = val
144 typedic_encoded = {}
145 for key, val in typedic.items():
146 newkey = str(key)
147 typedic_encoded[newkey] = val
148 return [fingerprints_encoded, typedic_encoded]
150 def _json_decode(self, fingerprints, typedic):
151 """ This is the reverse operation of _json_encode """
152 fingerprints_decoded = {}
153 for key, val in fingerprints.items():
154 newkey = list(map(int, key.split("_")))
155 if len(newkey) > 1:
156 newkey = tuple(newkey)
157 else:
158 newkey = newkey[0]
160 if isinstance(val, dict):
161 fingerprints_decoded[newkey] = {}
162 for key2, val2 in val.items():
163 fingerprints_decoded[newkey][int(key2)] = np.array(val2)
164 else:
165 fingerprints_decoded[newkey] = np.array(val)
166 typedic_decoded = {}
167 for key, val in typedic.items():
168 newkey = int(key)
169 typedic_decoded[newkey] = val
170 return [fingerprints_decoded, typedic_decoded]
172 def _compare_structure(self, a1, a2):
173 """ Returns the cosine distance between the two structures,
174 using their fingerprints. """
176 if len(a1) != len(a2):
177 raise Exception('The two configurations are not the same size.')
179 a1top = a1[-self.n_top:]
180 a2top = a2[-self.n_top:]
182 if 'fingerprints' in a1.info and not self.recalculate:
183 fp1, typedic1 = a1.info['fingerprints']
184 fp1, typedic1 = self._json_decode(fp1, typedic1)
185 else:
186 fp1, typedic1 = self._take_fingerprints(a1top)
187 a1.info['fingerprints'] = self._json_encode(fp1, typedic1)
189 if 'fingerprints' in a2.info and not self.recalculate:
190 fp2, typedic2 = a2.info['fingerprints']
191 fp2, typedic2 = self._json_decode(fp2, typedic2)
192 else:
193 fp2, typedic2 = self._take_fingerprints(a2top)
194 a2.info['fingerprints'] = self._json_encode(fp2, typedic2)
196 if sorted(fp1) != sorted(fp2):
197 raise AssertionError('The two structures have fingerprints '
198 'with different compounds.')
199 for key in typedic1:
200 if not np.array_equal(typedic1[key], typedic2[key]):
201 raise AssertionError('The two structures have a different '
202 'stoichiometry or ordering!')
204 cos_dist = self._cosine_distance(fp1, fp2, typedic1)
205 return cos_dist
207 def _get_volume(self, a):
208 ''' Calculates the normalizing value, and other parameters
209 (pmin,pmax,qmin,qmax) that are used for surface area calculation
210 in the case of 1 or 2-D periodicity.'''
212 cell = a.get_cell()
213 scalpos = a.get_scaled_positions()
215 # defaults:
216 volume = 1.
217 pmin, pmax, qmin, qmax = [0.] * 4
219 if self.dimensions == 1 or self.dimensions == 2:
220 for direction in range(3):
221 if not self.pbc[direction]:
222 if self.maxdims[direction] is None:
223 maxdim = np.linalg.norm(cell[direction, :])
224 self.maxdims[direction] = maxdim
226 pbc_dirs = [i for i in range(3) if self.pbc[i]]
227 non_pbc_dirs = [i for i in range(3) if not self.pbc[i]]
229 if self.dimensions == 3:
230 volume = abs(np.dot(np.cross(cell[0, :], cell[1, :]), cell[2, :]))
232 elif self.dimensions == 2:
233 non_pbc_dir = non_pbc_dirs[0]
235 a = np.cross(cell[pbc_dirs[0], :], cell[pbc_dirs[1], :])
236 b = self.maxdims[non_pbc_dir]
237 b /= np.linalg.norm(cell[non_pbc_dir, :])
239 volume = np.abs(np.dot(a, b * cell[non_pbc_dir, :]))
241 maxpos = np.max(scalpos[:, non_pbc_dir])
242 minpos = np.min(scalpos[:, non_pbc_dir])
243 pwidth = maxpos - minpos
244 pmargin = 0.5 * (b - pwidth)
245 # note: here is a place where we assume that the
246 # non-periodic direction is orthogonal to the periodic ones:
247 pmin = np.min(scalpos[:, non_pbc_dir]) - pmargin
248 pmin *= np.linalg.norm(cell[non_pbc_dir, :])
249 pmax = np.max(scalpos[:, non_pbc_dir]) + pmargin
250 pmax *= np.linalg.norm(cell[non_pbc_dir, :])
252 elif self.dimensions == 1:
253 pbc_dir = pbc_dirs[0]
255 v0 = cell[non_pbc_dirs[0], :]
256 b0 = self.maxdims[non_pbc_dirs[0]]
257 b0 /= np.linalg.norm(cell[non_pbc_dirs[0], :])
258 v1 = cell[non_pbc_dirs[1], :]
259 b1 = self.maxdims[non_pbc_dirs[1]]
260 b1 /= np.linalg.norm(cell[non_pbc_dirs[1], :])
262 volume = np.abs(np.dot(np.cross(b0 * v0, b1 * v1),
263 cell[pbc_dir, :]))
265 # note: here is a place where we assume that the
266 # non-periodic direction is orthogonal to the periodic ones:
267 maxpos = np.max(scalpos[:, non_pbc_dirs[0]])
268 minpos = np.min(scalpos[:, non_pbc_dirs[0]])
269 pwidth = maxpos - minpos
270 pmargin = 0.5 * (b0 - pwidth)
272 pmin = np.min(scalpos[:, non_pbc_dirs[0]]) - pmargin
273 pmin *= np.linalg.norm(cell[non_pbc_dirs[0], :])
274 pmax = np.max(scalpos[:, non_pbc_dirs[0]]) + pmargin
275 pmax *= np.linalg.norm(cell[non_pbc_dirs[0], :])
277 maxpos = np.max(scalpos[:, non_pbc_dirs[1]])
278 minpos = np.min(scalpos[:, non_pbc_dirs[1]])
279 qwidth = maxpos - minpos
280 qmargin = 0.5 * (b1 - qwidth)
282 qmin = np.min(scalpos[:, non_pbc_dirs[1]]) - qmargin
283 qmin *= np.linalg.norm(cell[non_pbc_dirs[1], :])
284 qmax = np.max(scalpos[:, non_pbc_dirs[1]]) + qmargin
285 qmax *= np.linalg.norm(cell[non_pbc_dirs[1], :])
287 elif self.dimensions == 0:
288 volume = 1.
290 return [volume, pmin, pmax, qmin, qmax]
292 def _take_fingerprints(self, atoms, individual=False):
293 """ Returns a [fingerprints,typedic] list, where fingerprints
294 is a dictionary with the fingerprints, and typedic is a
295 dictionary with the list of atom indices for each element
296 (or "type") in the atoms object.
297 The keys in the fingerprints dictionary are the (A,B) tuples,
298 which are the different element-element combinations in the
299 atoms object (A and B are the atomic numbers).
300 When A != B, the (A,B) tuple is sorted (A < B).
302 If individual=True, a dict is returned, where each atom index
303 has an {atomic_number:fingerprint} dict as value.
304 If individual=False, the fingerprints from atoms of the same
305 atomic number are added together."""
307 pos = atoms.get_positions()
308 num = atoms.get_atomic_numbers()
309 cell = atoms.get_cell()
311 unique_types = np.unique(num)
312 posdic = {}
313 typedic = {}
314 for t in unique_types:
315 tlist = [i for i, atom in enumerate(atoms) if atom.number == t]
316 typedic[t] = tlist
317 posdic[t] = pos[tlist]
319 # determining the volume normalization and other parameters
320 volume, pmin, pmax, qmin, qmax = self._get_volume(atoms)
322 # functions for calculating the surface area
323 non_pbc_dirs = [i for i in range(3) if not self.pbc[i]]
325 def surface_area_0d(r):
326 return 4 * np.pi * (r**2)
328 def surface_area_1d(r, pos):
329 q0 = pos[non_pbc_dirs[1]]
330 phi1 = np.lib.scimath.arccos((qmax - q0) / r).real
331 phi2 = np.pi - np.lib.scimath.arccos((qmin - q0) / r).real
332 factor = 1 - (phi1 + phi2) / np.pi
333 return surface_area_2d(r, pos) * factor
335 def surface_area_2d(r, pos):
336 p0 = pos[non_pbc_dirs[0]]
337 area = np.minimum(pmax - p0, r) + np.minimum(p0 - pmin, r)
338 area *= 2 * np.pi * r
339 return area
341 def surface_area_3d(r):
342 return 4 * np.pi * (r**2)
344 # build neighborlist
345 # this is computationally the most intensive part
346 a = atoms.copy()
347 a.set_pbc(self.pbc)
348 nl = NeighborList([self.rcut / 2.] * len(a), skin=0.,
349 self_interaction=False, bothways=True)
350 nl.update(a)
352 # parameters for the binning:
353 m = int(np.ceil(self.nsigma * self.sigma / self.binwidth))
354 x = 0.25 * np.sqrt(2) * self.binwidth * (2 * m + 1) * 1. / self.sigma
355 smearing_norm = erf(x)
356 nbins = int(np.ceil(self.rcut * 1. / self.binwidth))
357 bindist = self.binwidth * np.arange(1, nbins + 1)
359 def take_individual_rdf(index, unique_type):
360 # Computes the radial distribution function of atoms
361 # of type unique_type around the atom with index "index".
362 rdf = np.zeros(nbins)
364 if self.dimensions == 3:
365 weights = 1. / surface_area_3d(bindist)
366 elif self.dimensions == 2:
367 weights = 1. / surface_area_2d(bindist, pos[index])
368 elif self.dimensions == 1:
369 weights = 1. / surface_area_1d(bindist, pos[index])
370 elif self.dimensions == 0:
371 weights = 1. / surface_area_0d(bindist)
372 weights /= self.binwidth
374 indices, offsets = nl.get_neighbors(index)
375 valid = np.where(num[indices] == unique_type)
376 p = pos[indices[valid]] + np.dot(offsets[valid], cell)
377 r = cdist(p, [pos[index]])
378 bins = np.floor(r / self.binwidth)
380 for i in range(-m, m + 1):
381 newbins = bins + i
382 valid = np.where((newbins >= 0) & (newbins < nbins))
383 valid_bins = newbins[valid].astype(int)
384 values = weights[valid_bins]
386 c = 0.25 * np.sqrt(2) * self.binwidth * 1. / self.sigma
387 values *= 0.5 * erf(c * (2 * i + 1)) - \
388 0.5 * erf(c * (2 * i - 1))
389 values /= smearing_norm
391 for j, valid_bin in enumerate(valid_bins):
392 rdf[valid_bin] += values[j]
394 rdf /= len(typedic[unique_type]) * 1. / volume
395 return rdf
397 fingerprints = {}
398 if individual:
399 for i in range(len(atoms)):
400 fingerprints[i] = {}
401 for unique_type in unique_types:
402 fingerprint = take_individual_rdf(i, unique_type)
403 if self.dimensions > 0:
404 fingerprint -= 1
405 fingerprints[i][unique_type] = fingerprint
406 else:
407 for t1, t2 in combinations_with_replacement(unique_types, r=2):
408 key = (t1, t2)
409 fingerprint = np.zeros(nbins)
410 for i in typedic[t1]:
411 fingerprint += take_individual_rdf(i, t2)
412 fingerprint /= len(typedic[t1])
413 if self.dimensions > 0:
414 fingerprint -= 1
415 fingerprints[key] = fingerprint
417 return [fingerprints, typedic]
419 def _calculate_local_orders(self, individual_fingerprints, typedic,
420 volume):
421 """ Returns a list with the local order for every atom,
422 using the definition of local order from
423 Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632
424 :doi:`10.1016/j.cpc.2010.06.007`"""
426 # total number of atoms:
427 n_tot = sum([len(typedic[key]) for key in typedic])
428 inv_n_tot = 1. / n_tot
430 local_orders = []
431 for fingerprints in individual_fingerprints.values():
432 local_order = 0
433 for unique_type, fingerprint in fingerprints.items():
434 term = np.linalg.norm(fingerprint)**2
435 term *= self.binwidth
436 term *= (volume * inv_n_tot)**(-1 / 3)
437 term *= len(typedic[unique_type]) * inv_n_tot
438 local_order += term
439 local_orders.append(np.sqrt(local_order))
441 return local_orders
443 def get_local_orders(self, a):
444 """ Returns the local orders of all the atoms."""
446 a_top = a[-self.n_top:]
447 key = 'individual_fingerprints'
449 if key in a.info and not self.recalculate:
450 fp, typedic = self._json_decode(*a.info[key])
451 else:
452 fp, typedic = self._take_fingerprints(a_top, individual=True)
453 a.info[key] = self._json_encode(fp, typedic)
455 volume, pmin, pmax, qmin, qmax = self._get_volume(a_top)
456 return self._calculate_local_orders(fp, typedic, volume)
458 def _cosine_distance(self, fp1, fp2, typedic):
459 """ Returns the cosine distance from two fingerprints.
460 It also needs information about the number of atoms from
461 each element, which is included in "typedic"."""
463 keys = sorted(fp1)
465 # calculating the weights:
466 w = {}
467 wtot = 0
468 for key in keys:
469 weight = len(typedic[key[0]]) * len(typedic[key[1]])
470 wtot += weight
471 w[key] = weight
472 for key in keys:
473 w[key] *= 1. / wtot
475 # calculating the fingerprint norms:
476 norm1 = 0
477 norm2 = 0
478 for key in keys:
479 norm1 += (np.linalg.norm(fp1[key])**2) * w[key]
480 norm2 += (np.linalg.norm(fp2[key])**2) * w[key]
481 norm1 = np.sqrt(norm1)
482 norm2 = np.sqrt(norm2)
484 # calculating the distance:
485 distance = 0
486 for key in keys:
487 distance += np.sum(fp1[key] * fp2[key]) * w[key] / (norm1 * norm2)
489 distance = 0.5 * (1 - distance)
490 return distance
492 def plot_fingerprints(self, a, prefix=''):
493 """ Function for quickly plotting all the fingerprints.
494 Prefix = a prefix you want to give to the resulting PNG file."""
496 if 'fingerprints' in a.info and not self.recalculate:
497 fp, typedic = a.info['fingerprints']
498 fp, typedic = self._json_decode(fp, typedic)
499 else:
500 a_top = a[-self.n_top:]
501 fp, typedic = self._take_fingerprints(a_top)
502 a.info['fingerprints'] = self._json_encode(fp, typedic)
504 npts = int(np.ceil(self.rcut * 1. / self.binwidth))
505 x = np.linspace(0, self.rcut, npts, endpoint=False)
507 for key, val in fp.items():
508 plt.plot(x, val)
509 suffix = f"_fp_{key[0]}_{key[1]}.png"
510 plt.savefig(prefix + suffix)
511 plt.clf()
513 def plot_individual_fingerprints(self, a, prefix=''):
514 """ Function for plotting all the individual fingerprints.
515 Prefix = a prefix for the resulting PNG file."""
516 if 'individual_fingerprints' in a.info and not self.recalculate:
517 fp, typedic = a.info['individual_fingerprints']
518 else:
519 a_top = a[-self.n_top:]
520 fp, typedic = self._take_fingerprints(a_top, individual=True)
521 a.info['individual_fingerprints'] = [fp, typedic]
523 npts = int(np.ceil(self.rcut * 1. / self.binwidth))
524 x = np.linspace(0, self.rcut, npts, endpoint=False)
526 for key, val in fp.items():
527 for key2, val2 in val.items():
528 plt.plot(x, val2)
529 plt.ylim([-1, 10])
530 suffix = f"_individual_fp_{key}_{key2}.png"
531 plt.savefig(prefix + suffix)
532 plt.clf()