Coverage for /builds/kinetik161/ase/ase/dft/dos.py: 77.94%
136 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1from math import pi, sqrt
3import numpy as np
5from ase.dft.kpoints import get_monkhorst_pack_size_and_offset
6from ase.parallel import world
7from ase.utils.cext import cextension
10class DOS:
11 def __init__(self, calc, width=0.1, window=None, npts=401, comm=world):
12 """Electronic Density Of States object.
14 calc: calculator object
15 Any ASE compliant calculator object.
16 width: float
17 Width of guassian smearing. Use width=0.0 for linear tetrahedron
18 interpolation.
19 window: tuple of two float
20 Use ``window=(emin, emax)``. If not specified, a window
21 big enough to hold all the eigenvalues will be used.
22 npts: int
23 Number of points.
24 comm: communicator object
25 MPI communicator for lti_dos
27 """
29 self.comm = comm
30 self.npts = npts
31 self.width = width
32 self.w_k = calc.get_k_point_weights()
33 self.nspins = calc.get_number_of_spins()
34 self.e_skn = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
35 for k in range(len(self.w_k))]
36 for s in range(self.nspins)])
37 try: # two Fermi levels
38 for i, eF in enumerate(calc.get_fermi_level()):
39 self.e_skn[i] -= eF
40 except TypeError: # a single Fermi level
41 self.e_skn -= calc.get_fermi_level()
43 if window is None:
44 emin = None
45 emax = None
46 else:
47 emin, emax = window
49 if emin is None:
50 emin = self.e_skn.min() - 5 * self.width
51 if emax is None:
52 emax = self.e_skn.max() + 5 * self.width
54 self.energies = np.linspace(emin, emax, npts)
56 if width == 0.0:
57 bzkpts = calc.get_bz_k_points()
58 size, offset = get_monkhorst_pack_size_and_offset(bzkpts)
59 bz2ibz = calc.get_bz_to_ibz_map()
60 shape = (self.nspins,) + tuple(size) + (-1,)
61 self.e_skn = self.e_skn[:, bz2ibz].reshape(shape)
62 self.cell = calc.atoms.cell
64 def get_energies(self):
65 """Return the array of energies used to sample the DOS.
67 The energies are reported relative to the Fermi level.
68 """
69 return self.energies
71 def delta(self, energy):
72 """Return a delta-function centered at 'energy'."""
73 x = -((self.energies - energy) / self.width)**2
74 return np.exp(x) / (sqrt(pi) * self.width)
76 def get_dos(self, spin=None):
77 """Get array of DOS values.
79 The *spin* argument can be 0 or 1 (spin up or down) - if not
80 specified, the total DOS is returned.
81 """
83 if spin is None:
84 if self.nspins == 2:
85 # Return the total DOS
86 return self.get_dos(spin=0) + self.get_dos(spin=1)
87 else:
88 return 2 * self.get_dos(spin=0)
89 elif spin == 1 and self.nspins == 1:
90 # For an unpolarized calculation, spin up and down are equivalent
91 spin = 0
93 if self.width == 0.0:
94 dos = linear_tetrahedron_integration(self.cell, self.e_skn[spin],
95 self.energies, comm=self.comm)
96 return dos
98 dos = np.zeros(self.npts)
99 for w, e_n in zip(self.w_k, self.e_skn[spin]):
100 for e in e_n:
101 dos += w * self.delta(e)
102 return dos
105def linear_tetrahedron_integration(cell, eigs, energies,
106 weights=None, comm=world):
107 """DOS from linear tetrahedron interpolation.
109 cell: 3x3 ndarray-like
110 Unit cell.
111 eigs: (n1, n2, n3, nbands)-shaped ndarray
112 Eigenvalues on a Monkhorst-Pack grid (not reduced).
113 energies: 1-d array-like
114 Energies where the DOS is calculated (must be a uniform grid).
115 weights: ndarray of shape (n1, n2, n3, nbands) or (n1, n2, n3, nbands, nw)
116 Weights. Defaults to a (n1, n2, n3, nbands)-shaped ndarray
117 filled with ones. Can also have an extra dimednsion if there are
118 nw weights.
119 comm: communicator object
120 MPI communicator for lti_dos
122 Returns:
124 DOS as an ndarray of same length as energies or as an
125 ndarray of shape (nw, len(energies)).
127 See:
129 Extensions of the tetrahedron method for evaluating
130 spectral properties of solids,
131 A. H. MacDonald, S. H. Vosko and P. T. Coleridge,
132 1979 J. Phys. C: Solid State Phys. 12 2991,
133 :doi:`10.1088/0022-3719/12/15/008`
134 """
136 from scipy.spatial import Delaunay
138 # Find the 6 tetrahedra:
139 size = eigs.shape[:3]
140 B = (np.linalg.inv(cell) / size).T
141 indices = np.array([[i, j, k]
142 for i in [0, 1] for j in [0, 1] for k in [0, 1]])
143 dt = Delaunay(np.dot(indices, B))
145 if weights is None:
146 weights = np.ones_like(eigs)
148 if weights.ndim == 4:
149 extra_dimension_added = True
150 weights = weights[:, :, :, :, np.newaxis]
151 else:
152 extra_dimension_added = False
154 nweights = weights.shape[4]
155 dos = np.empty((nweights, len(energies)))
157 lti_dos(indices[dt.simplices], eigs, weights, energies, dos, comm)
159 dos /= np.prod(size)
161 if extra_dimension_added:
162 return dos[0]
163 return dos
166@cextension
167def lti_dos(simplices, eigs, weights, energies, dos, world):
168 shape = eigs.shape[:3]
169 nweights = weights.shape[-1]
170 dos[:] = 0.0
171 n = -1
172 for index in np.indices(shape).reshape((3, -1)).T:
173 n += 1
174 if n % world.size != world.rank:
175 continue
176 i = ((index + simplices) % shape).T
177 E = eigs[i[0], i[1], i[2]].reshape((4, -1))
178 W = weights[i[0], i[1], i[2]].reshape((4, -1, nweights))
179 for e, w in zip(E.T, W.transpose((1, 0, 2))):
180 lti_dos1(e, w, energies, dos)
182 dos /= 6.0
183 world.sum(dos)
186def lti_dos1(e, w, energies, dos):
187 i = e.argsort()
188 e0, e1, e2, e3 = en = e[i]
189 w = w[i]
191 zero = energies[0]
192 if len(energies) > 1:
193 de = energies[1] - zero
194 nn = (np.floor((en - zero) / de).astype(int) + 1).clip(0,
195 len(energies))
196 else:
197 nn = (en > zero).astype(int)
199 n0, n1, n2, n3 = nn
201 if n1 > n0:
202 s = slice(n0, n1)
203 x = energies[s] - e0
204 f10 = x / (e1 - e0)
205 f20 = x / (e2 - e0)
206 f30 = x / (e3 - e0)
207 f01 = 1 - f10
208 f02 = 1 - f20
209 f03 = 1 - f30
210 g = f20 * f30 / (e1 - e0)
211 dos[:, s] += w.T.dot([f01 + f02 + f03,
212 f10,
213 f20,
214 f30]) * g
215 if n2 > n1:
216 delta = e3 - e0
217 s = slice(n1, n2)
218 x = energies[s]
219 f20 = (x - e0) / (e2 - e0)
220 f30 = (x - e0) / (e3 - e0)
221 f21 = (x - e1) / (e2 - e1)
222 f31 = (x - e1) / (e3 - e1)
223 f02 = 1 - f20
224 f03 = 1 - f30
225 f12 = 1 - f21
226 f13 = 1 - f31
227 g = 3 / delta * (f12 * f20 + f21 * f13)
228 dos[:, s] += w.T.dot([g * f03 / 3 + f02 * f20 * f12 / delta,
229 g * f12 / 3 + f13 * f13 * f21 / delta,
230 g * f21 / 3 + f20 * f20 * f12 / delta,
231 g * f30 / 3 + f31 * f13 * f21 / delta])
232 if n3 > n2:
233 s = slice(n2, n3)
234 x = energies[s] - e3
235 f03 = x / (e0 - e3)
236 f13 = x / (e1 - e3)
237 f23 = x / (e2 - e3)
238 f30 = 1 - f03
239 f31 = 1 - f13
240 f32 = 1 - f23
241 g = f03 * f13 / (e3 - e2)
242 dos[:, s] += w.T.dot([f03,
243 f13,
244 f23,
245 f30 + f31 + f32]) * g