Coverage for /builds/kinetik161/ase/ase/dft/stm.py: 82.72%

162 statements  

« prev     ^ index     » next       coverage.py v7.2.7, created at 2023-12-10 11:04 +0000

1import numpy as np 

2 

3from ase.io.jsonio import read_json, write_json 

4 

5 

6class STM: 

7 def __init__(self, atoms, symmetries=None, use_density=False): 

8 """Scanning tunneling microscope. 

9 

10 atoms: Atoms object or filename 

11 Atoms to scan or name of file to read LDOS from. 

12 symmetries: list of int 

13 List of integers 0, 1, and/or 2 indicating which surface 

14 symmetries have been used to reduce the number of k-points 

15 for the DFT calculation. The three integers correspond to 

16 the following three symmetry operations:: 

17 

18 [-1 0] [ 1 0] [ 0 1] 

19 [ 0 1] [ 0 -1] [ 1 0] 

20 

21 use_density: bool 

22 Use the electron density instead of the LDOS. 

23 """ 

24 

25 self.use_density = use_density 

26 

27 if isinstance(atoms, str): 

28 with open(atoms) as fd: 

29 self.ldos, self.bias, self.cell = read_json(fd, 

30 always_array=False) 

31 self.atoms = None 

32 else: 

33 self.atoms = atoms 

34 self.cell = atoms.cell 

35 self.bias = None 

36 self.ldos = None 

37 assert not self.cell[2, :2].any() and not self.cell[:2, 2].any() 

38 

39 self.symmetries = symmetries or [] 

40 

41 def calculate_ldos(self, bias): 

42 """Calculate local density of states for given bias.""" 

43 if self.ldos is not None and bias == self.bias: 

44 return 

45 

46 self.bias = bias 

47 

48 calc = self.atoms.calc 

49 

50 if self.use_density: 

51 self.ldos = calc.get_pseudo_density() 

52 return 

53 

54 if bias < 0: 

55 emin = bias 

56 emax = 0.0 

57 else: 

58 emin = 0 

59 emax = bias 

60 

61 nbands = calc.get_number_of_bands() 

62 weights = calc.get_k_point_weights() 

63 nkpts = len(weights) 

64 nspins = calc.get_number_of_spins() 

65 eigs = np.array([[calc.get_eigenvalues(k, s) 

66 for k in range(nkpts)] 

67 for s in range(nspins)]) 

68 eigs -= calc.get_fermi_level() 

69 ldos = np.zeros(calc.get_pseudo_wave_function(0, 0, 0).shape) 

70 

71 for s in range(nspins): 

72 for k in range(nkpts): 

73 for n in range(nbands): 

74 e = eigs[s, k, n] 

75 if emin < e < emax: 

76 psi = calc.get_pseudo_wave_function(n, k, s) 

77 ldos += weights[k] * (psi * np.conj(psi)).real 

78 

79 if 0 in self.symmetries: 

80 # (x,y) -> (-x,y) 

81 ldos[1:] += ldos[:0:-1].copy() 

82 ldos[1:] *= 0.5 

83 

84 if 1 in self.symmetries: 

85 # (x,y) -> (x,-y) 

86 ldos[:, 1:] += ldos[:, :0:-1].copy() 

87 ldos[:, 1:] *= 0.5 

88 

89 if 2 in self.symmetries: 

90 # (x,y) -> (y,x) 

91 ldos += ldos.transpose((1, 0, 2)).copy() 

92 ldos *= 0.5 

93 

94 self.ldos = ldos 

95 

96 def write(self, filename): 

97 """Write local density of states to JSON file.""" 

98 write_json(filename, (self.ldos, self.bias, self.cell)) 

99 

100 def get_averaged_current(self, bias, z): 

101 """Calculate avarage current at height z (in Angstrom). 

102 

103 Use this to get an idea of what current to use when scanning.""" 

104 

105 self.calculate_ldos(bias) 

106 nz = self.ldos.shape[2] 

107 

108 # Find grid point: 

109 n = z / self.cell[2, 2] * nz 

110 dn = n - np.floor(n) 

111 n = int(n) % nz 

112 

113 # Average and do linear interpolation: 

114 return ((1 - dn) * self.ldos[:, :, n].mean() + 

115 dn * self.ldos[:, :, (n + 1) % nz].mean()) 

116 

117 def scan(self, bias, current, z0=None, repeat=(1, 1)): 

118 """Constant current 2-d scan. 

119 

120 Returns three 2-d arrays (x, y, z) containing x-coordinates, 

121 y-coordinates and heights. These three arrays can be passed to 

122 matplotlibs contourf() function like this: 

123 

124 >>> import matplotlib.pyplot as plt 

125 >>> plt.contourf(x, y, z) 

126 >>> plt.show() 

127 

128 """ 

129 

130 self.calculate_ldos(bias) 

131 

132 L = self.cell[2, 2] 

133 nz = self.ldos.shape[2] 

134 h = L / nz 

135 

136 ldos = self.ldos.reshape((-1, nz)) 

137 

138 heights = np.empty(ldos.shape[0]) 

139 for i, a in enumerate(ldos): 

140 heights[i] = find_height(a, current, h, z0) 

141 

142 s0 = heights.shape = self.ldos.shape[:2] 

143 heights = np.tile(heights, repeat) 

144 s = heights.shape 

145 

146 ij = np.indices(s, dtype=float).reshape((2, -1)).T 

147 x, y = np.dot(ij / s0, self.cell[:2, :2]).T.reshape((2,) + s) 

148 

149 return x, y, heights 

150 

151 def scan2(self, bias, z, repeat=(1, 1)): 

152 """Constant height 2-d scan. 

153 

154 Returns three 2-d arrays (x, y, I) containing x-coordinates, 

155 y-coordinates and currents. These three arrays can be passed to 

156 matplotlibs contourf() function like this: 

157 

158 >>> import matplotlib.pyplot as plt 

159 >>> plt.contourf(x, y, I) 

160 >>> plt.show() 

161 

162 """ 

163 

164 self.calculate_ldos(bias) 

165 

166 nz = self.ldos.shape[2] 

167 ldos = self.ldos.reshape((-1, nz)) 

168 

169 current = np.empty(ldos.shape[0]) 

170 

171 zp = z / self.cell[2, 2] * nz 

172 zp = int(zp) % nz 

173 

174 for i, a in enumerate(ldos): 

175 current[i] = self.find_current(a, zp) 

176 

177 s0 = current.shape = self.ldos.shape[:2] 

178 current = np.tile(current, repeat) 

179 s = current.shape 

180 

181 ij = np.indices(s, dtype=float).reshape((2, -1)).T 

182 x, y = np.dot(ij / s0, self.cell[:2, :2]).T.reshape((2,) + s) 

183 

184 # Returing scan with axes in Angstrom. 

185 return x, y, current 

186 

187 def linescan(self, bias, current, p1, p2, npoints=50, z0=None): 

188 """Constant current line scan. 

189 

190 Example:: 

191 

192 stm = STM(...) 

193 z = ... # tip position 

194 c = stm.get_averaged_current(-1.0, z) 

195 stm.linescan(-1.0, c, (1.2, 0.0), (1.2, 3.0)) 

196 """ 

197 

198 heights = self.scan(bias, current, z0)[2] 

199 

200 p1 = np.asarray(p1, float) 

201 p2 = np.asarray(p2, float) 

202 d = p2 - p1 

203 s = np.dot(d, d)**0.5 

204 

205 cell = self.cell[:2, :2] 

206 shape = np.array(heights.shape, float) 

207 M = np.linalg.inv(cell) 

208 line = np.empty(npoints) 

209 for i in range(npoints): 

210 p = p1 + i * d / (npoints - 1) 

211 q = np.dot(p, M) * shape 

212 line[i] = interpolate(q, heights) 

213 return np.linspace(0, s, npoints), line 

214 

215 def pointcurrent(self, bias, x, y, z): 

216 """Current for a single x, y, z position for a given bias.""" 

217 

218 self.calculate_ldos(bias) 

219 

220 nx = self.ldos.shape[0] 

221 ny = self.ldos.shape[1] 

222 nz = self.ldos.shape[2] 

223 

224 # Find grid point: 

225 xp = x / np.linalg.norm(self.cell[0]) * nx 

226 dx = xp - np.floor(xp) 

227 xp = int(xp) % nx 

228 

229 yp = y / np.linalg.norm(self.cell[1]) * ny 

230 dy = yp - np.floor(yp) 

231 yp = int(yp) % ny 

232 

233 zp = z / np.linalg.norm(self.cell[2]) * nz 

234 dz = zp - np.floor(zp) 

235 zp = int(zp) % nz 

236 

237 # 3D interpolation of the LDOS at point (x,y,z) at given bias. 

238 xyzldos = (((1 - dx) + (1 - dy) + (1 - dz)) * self.ldos[xp, yp, zp] + 

239 dx * self.ldos[(xp + 1) % nx, yp, zp] + 

240 dy * self.ldos[xp, (yp + 1) % ny, zp] + 

241 dz * self.ldos[xp, yp, (zp + 1) % nz]) 

242 

243 return dos2current(bias, xyzldos) 

244 

245 def sts(self, x, y, z, bias0, bias1, biasstep): 

246 """Returns the dI/dV curve for position x, y at height z (in Angstrom), 

247 for bias from bias0 to bias1 with step biasstep.""" 

248 

249 biases = np.arange(bias0, bias1 + biasstep, biasstep) 

250 current = np.zeros(biases.shape) 

251 

252 for b in np.arange(len(biases)): 

253 print(b, biases[b]) 

254 current[b] = self.pointcurrent(biases[b], x, y, z) 

255 

256 dIdV = np.gradient(current, biasstep) 

257 

258 return biases, current, dIdV 

259 

260 def find_current(self, ldos, z): 

261 """ Finds current for given LDOS at height z.""" 

262 nz = self.ldos.shape[2] 

263 

264 zp = z / self.cell[2, 2] * nz 

265 dz = zp - np.floor(zp) 

266 zp = int(zp) % nz 

267 

268 ldosz = (1 - dz) * ldos[zp] + dz * ldos[(zp + 1) % nz] 

269 

270 return dos2current(self.bias, ldosz) 

271 

272 

273def dos2current(bias, dos): 

274 # Borrowed from gpaw/analyse/simple_stm.py: 

275 # The connection between density n and current I 

276 # n [e/Angstrom^3] = 0.0002 sqrt(I [nA]) 

277 # as given in Hofer et al., RevModPhys 75 (2003) 1287 

278 return 5000. * dos**2 * (1 if bias > 0 else -1) 

279 

280 

281def interpolate(q, heights): 

282 qi = q.astype(int) 

283 f = q - qi 

284 g = 1 - f 

285 qi %= heights.shape 

286 n0, m0 = qi 

287 n1, m1 = (qi + 1) % heights.shape 

288 z = (g[0] * g[1] * heights[n0, m0] + 

289 f[0] * g[1] * heights[n1, m0] + 

290 g[0] * f[1] * heights[n0, m1] + 

291 f[0] * f[1] * heights[n1, m1]) 

292 return z 

293 

294 

295def find_height(ldos, current, h, z0=None): 

296 if z0 is None: 

297 n = len(ldos) - 2 

298 else: 

299 n = int(z0 / h) 

300 while n >= 0: 

301 if ldos[n] > current: 

302 break 

303 n -= 1 

304 else: 

305 return 0.0 

306 

307 c2, c1 = ldos[n:n + 2] 

308 return (n + 1 - (current - c1) / (c2 - c1)) * h 

309 

310 

311def delta(biases, bias, width): 

312 """Return a delta-function centered at 'bias'""" 

313 x = -((biases - bias) / width)**2 

314 return np.exp(x) / (np.sqrt(np.pi) * width)