Coverage for /builds/kinetik161/ase/ase/lattice/bravais.py: 81.18%
287 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1"""Bravais.py - class for generating Bravais lattices etc.
3This is a base class for numerous classes setting up pieces of crystal.
4"""
6import math
7from typing import Optional, Sequence
9import numpy as np
11import ase.data
12from ase.atoms import Atoms
15class Bravais:
16 """Bravais lattice factory.
18 This is a base class for the objects producing various lattices
19 (SC, FCC, ...).
20 """
22 # The following methods are NOT defined here, but must be defined
23 # in classes inhering from Bravais:
24 # get_lattice_constant
25 # make_crystal_basis
26 # The following class attributes are NOT defined here, but must be defined
27 # in classes inhering from Bravais:
28 # int_basis
29 # inverse_basis
31 other = {0: (1, 2), 1: (2, 0), 2: (0, 1)}
33 # For Bravais lattices with a basis, set the basis here. Leave as
34 # None if no basis is present.
35 bravais_basis: Optional[Sequence[Sequence[float]]] = None
37 # If more than one type of element appear in the crystal, give the
38 # order here. For example, if two elements appear in a 3:1 ratio,
39 # bravais_basis could contain four vectors, and element_basis
40 # could be (0,0,1,0) - the third atom in the basis is different
41 # from the other three. Leave as None if all atoms are of the
42 # same type.
43 element_basis: Optional[Sequence[int]] = None
45 # How small numbers should be considered zero in the unit cell?
46 chop_tolerance = 1e-10
48 def __call__(self, symbol,
49 directions=(None, None, None), miller=(None, None, None),
50 size=(1, 1, 1), latticeconstant=None,
51 pbc=True, align=True, debug=0):
52 "Create a lattice."
53 self.size = size
54 self.pbc = pbc
55 self.debug = debug
56 self.process_element(symbol)
57 self.find_directions(directions, miller)
58 if self.debug:
59 self.print_directions_and_miller()
60 self.convert_to_natural_basis()
61 if self.debug >= 2:
62 self.print_directions_and_miller(" (natural basis)")
63 if latticeconstant is None:
64 if self.element_basis is None:
65 self.latticeconstant = self.get_lattice_constant()
66 else:
67 raise ValueError(
68 "A lattice constant must be specified for a compound")
69 else:
70 self.latticeconstant = latticeconstant
71 if self.debug:
72 print(
73 "Expected number of atoms in unit cell:",
74 self.calc_num_atoms())
75 if self.debug >= 2:
76 print("Bravais lattice basis:", self.bravais_basis)
77 if self.bravais_basis is not None:
78 print(" ... in natural basis:", self.natural_bravais_basis)
79 self.make_crystal_basis()
80 self.make_unit_cell()
81 if align:
82 self.align()
83 return self.make_list_of_atoms()
85 def align(self):
86 "Align the first axis along x-axis and the second in the x-y plane."
87 degree = 180 / np.pi
88 if self.debug >= 2:
89 print("Basis before alignment:")
90 print(self.basis)
91 if self.basis[0][0]**2 + \
92 self.basis[0][2]**2 < 0.01 * self.basis[0][1]**2:
93 # First basis vector along y axis - rotate 90 deg along z
94 t = np.array([[0, -1, 0],
95 [1, 0, 0],
96 [0, 0, 1]], float)
97 self.basis = np.dot(self.basis, t)
98 transf = t
99 if self.debug >= 2:
100 print("Rotating -90 degrees around z axis for numerical "
101 "stability.")
102 print(self.basis)
103 else:
104 transf = np.identity(3, float)
105 assert abs(np.linalg.det(transf) - 1) < 1e-6
106 # Rotate first basis vector into xy plane
107 theta = math.atan2(self.basis[0, 2], self.basis[0, 0])
108 t = np.array([[np.cos(theta), 0, -np.sin(theta)],
109 [0, 1, 0],
110 [np.sin(theta), 0, np.cos(theta)]])
111 self.basis = np.dot(self.basis, t)
112 transf = np.dot(transf, t)
113 if self.debug >= 2:
114 print(f"Rotating {-theta * degree:f} degrees around y axis.")
115 print(self.basis)
116 assert abs(np.linalg.det(transf) - 1) < 1e-6
117 # Rotate first basis vector to point along x axis
118 theta = math.atan2(self.basis[0, 1], self.basis[0, 0])
119 t = np.array([[np.cos(theta), -np.sin(theta), 0],
120 [np.sin(theta), np.cos(theta), 0],
121 [0, 0, 1]])
122 self.basis = np.dot(self.basis, t)
123 transf = np.dot(transf, t)
124 if self.debug >= 2:
125 print(f"Rotating {-theta * degree:f} degrees around z axis.")
126 print(self.basis)
127 assert abs(np.linalg.det(transf) - 1) < 1e-6
128 # Rotate second basis vector into xy plane
129 theta = math.atan2(self.basis[1, 2], self.basis[1, 1])
130 t = np.array([[1, 0, 0],
131 [0, np.cos(theta), -np.sin(theta)],
132 [0, np.sin(theta), np.cos(theta)]])
133 self.basis = np.dot(self.basis, t)
134 transf = np.dot(transf, t)
135 if self.debug >= 2:
136 print(f"Rotating {-theta * degree:f} degrees around x axis.")
137 print(self.basis)
138 assert abs(np.linalg.det(transf) - 1) < 1e-6
139 # Now we better rotate the atoms as well
140 self.atoms = np.dot(self.atoms, transf)
141 # ... and rotate miller_basis
142 self.miller_basis = np.dot(self.miller_basis, transf)
144 def make_list_of_atoms(self):
145 "Repeat the unit cell."
146 nrep = self.size[0] * self.size[1] * self.size[2]
147 if nrep <= 0:
148 raise ValueError(
149 "Cannot create a non-positive number of unit cells")
150 # Now the unit cells must be merged.
151 a2 = []
152 e2 = []
153 for i in range(self.size[0]):
154 offset = self.basis[0] * i
155 a2.append(self.atoms + offset[np.newaxis, :])
156 e2.append(self.elements)
157 atoms = np.concatenate(a2)
158 elements = np.concatenate(e2)
159 a2 = []
160 e2 = []
161 for j in range(self.size[1]):
162 offset = self.basis[1] * j
163 a2.append(atoms + offset[np.newaxis, :])
164 e2.append(elements)
165 atoms = np.concatenate(a2)
166 elements = np.concatenate(e2)
167 a2 = []
168 e2 = []
169 for k in range(self.size[2]):
170 offset = self.basis[2] * k
171 a2.append(atoms + offset[np.newaxis, :])
172 e2.append(elements)
173 atoms = np.concatenate(a2)
174 elements = np.concatenate(e2)
175 del a2, e2
176 assert len(atoms) == nrep * len(self.atoms)
177 basis = np.array([[self.size[0], 0, 0],
178 [0, self.size[1], 0],
179 [0, 0, self.size[2]]])
180 basis = np.dot(basis, self.basis)
182 # Tiny elements should be replaced by zero. The cutoff is
183 # determined by chop_tolerance which is a class attribute.
184 basis = np.where(np.abs(basis) < self.chop_tolerance,
185 0.0, basis)
187 # None should be replaced, and memory should be freed.
188 lattice = Lattice(positions=atoms, cell=basis, numbers=elements,
189 pbc=self.pbc)
190 lattice.millerbasis = self.miller_basis
191 # Add info for lattice.surface.AddAdsorbate
192 lattice._addsorbate_info_size = np.array(self.size[:2])
193 return lattice
195 def process_element(self, element):
196 "Extract atomic number from element"
197 # The types that can be elements: integers and strings
198 if self.element_basis is None:
199 if isinstance(element, str):
200 self.atomicnumber = ase.data.atomic_numbers[element]
201 elif isinstance(element, int):
202 self.atomicnumber = element
203 else:
204 raise TypeError(
205 "The symbol argument must be a string or an atomic number.")
206 else:
207 atomicnumber = []
208 try:
209 if len(element) != max(self.element_basis) + 1:
210 oops = True
211 else:
212 oops = False
213 except TypeError:
214 oops = True
215 if oops:
216 raise TypeError(
217 ("The symbol argument must be a sequence of length %d"
218 + " (one for each kind of lattice position")
219 % (max(self.element_basis) + 1,))
220 for e in element:
221 if isinstance(e, str):
222 atomicnumber.append(ase.data.atomic_numbers[e])
223 elif isinstance(e, int):
224 atomicnumber.append(e)
225 else:
226 raise TypeError(
227 "The symbols argument must be a sequence of strings "
228 "or atomic numbers.")
229 self.atomicnumber = [atomicnumber[i] for i in self.element_basis]
230 assert len(self.atomicnumber) == len(self.bravais_basis)
232 def convert_to_natural_basis(self):
233 "Convert directions and miller indices to the natural basis."
234 self.directions = np.dot(self.directions, self.inverse_basis)
235 if self.bravais_basis is not None:
236 self.natural_bravais_basis = np.dot(self.bravais_basis,
237 self.inverse_basis)
238 for i in (0, 1, 2):
239 self.directions[i] = reduceindex(self.directions[i])
240 for i in (0, 1, 2):
241 (j, k) = self.other[i]
242 self.miller[i] = reduceindex(self.handedness *
243 cross(self.directions[j],
244 self.directions[k]))
246 def calc_num_atoms(self):
247 v = int(round(abs(np.linalg.det(self.directions))))
248 if self.bravais_basis is None:
249 return v
250 else:
251 return v * len(self.bravais_basis)
253 def make_unit_cell(self):
254 "Make the unit cell."
255 # Make three loops, and find the positions in the integral
256 # lattice. Each time a position is found, the atom is placed
257 # in the real unit cell by put_atom().
258 self.natoms = self.calc_num_atoms()
259 self.nput = 0
260 self.atoms = np.zeros((self.natoms, 3), float)
261 self.elements = np.zeros(self.natoms, int)
262 self.farpoint = sum(self.directions)
263 # printprogress = self.debug and (len(self.atoms) > 250)
264 # Find the radius of the sphere containing the whole system
265 sqrad = 0
266 for i in (0, 1):
267 for j in (0, 1):
268 for k in (0, 1):
269 vect = (i * self.directions[0] +
270 j * self.directions[1] +
271 k * self.directions[2])
272 if np.dot(vect, vect) > sqrad:
273 sqrad = np.dot(vect, vect)
274 del i, j, k
275 # Loop along first crystal axis (i)
276 for (istart, istep) in ((0, 1), (-1, -1)):
277 i = istart
278 icont = True
279 while icont:
280 nj = 0
281 for (jstart, jstep) in ((0, 1), (-1, -1)):
282 j = jstart
283 jcont = True
284 while jcont:
285 nk = 0
286 for (kstart, kstep) in ((0, 1), (-1, -1)):
287 k = kstart
288 kcont = True
289 while kcont:
290 # Now (i,j,k) loops over Z^3, except that
291 # the loops can be cut off when we get outside
292 # the unit cell.
293 point = np.array((i, j, k))
294 if self.inside(point):
295 self.put_atom(point)
296 nk += 1
297 nj += 1
298 # Is k too high?
299 if np.dot(point, point) > sqrad:
300 assert not self.inside(point)
301 kcont = False
302 k += kstep
303 # Is j too high?
304 if i * i + j * j > sqrad:
305 jcont = False
306 j += jstep
307 # Is i too high?
308 if i * i > sqrad:
309 icont = False
310 i += istep
311 # if printprogress:
312 # perce = int(100*self.nput / len(self.atoms))
313 # if perce > percent + 10:
314 # print ("%d%%" % perce),
315 # percent = perce
316 assert self.nput == self.natoms
318 def inside(self, point):
319 "Is a point inside the unit cell?"
320 return (np.dot(self.miller[0], point) >= 0 and
321 np.dot(self.miller[0], point - self.farpoint) < 0 and
322 np.dot(self.miller[1], point) >= 0 and
323 np.dot(self.miller[1], point - self.farpoint) < 0 and
324 np.dot(self.miller[2], point) >= 0 and
325 np.dot(self.miller[2], point - self.farpoint) < 0)
327 def put_atom(self, point):
328 "Place an atom given its integer coordinates."
329 if self.bravais_basis is None:
330 # No basis - just place a single atom
331 pos = np.dot(point, self.crystal_basis)
332 if self.debug >= 2:
333 print('Placing an atom at (%d,%d,%d) ~ (%.3f, %.3f, %.3f).' %
334 (tuple(point) + tuple(pos)))
335 self.atoms[self.nput] = pos
336 self.elements[self.nput] = self.atomicnumber
337 self.nput += 1
338 else:
339 for i, offset in enumerate(self.natural_bravais_basis):
340 pos = np.dot(point + offset, self.crystal_basis)
341 if self.debug >= 2:
342 print('Placing an atom at (%d+%f, %d+%f, %d+%f) ~ '
343 '(%.3f, %.3f, %.3f).' %
344 (point[0], offset[0], point[1], offset[1],
345 point[2], offset[2], pos[0], pos[1], pos[2]))
346 self.atoms[self.nput] = pos
347 if self.element_basis is None:
348 self.elements[self.nput] = self.atomicnumber
349 else:
350 self.elements[self.nput] = self.atomicnumber[i]
351 self.nput += 1
353 def find_directions(self, directions, miller):
354 """
355 Find missing directions and miller indices from the specified ones.
356 """
357 directions = np.asarray(directions).tolist()
358 miller = list(miller) # np.asarray(miller).tolist()
359 # If no directions etc are specified, use a sensible default.
360 if directions == [None, None, None] and miller == [None, None, None]:
361 directions = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
362 # Now fill in missing directions and miller indices. This is an
363 # iterative process.
364 change = 1
365 while change:
366 change = False
367 missing = 0
368 for i in (0, 1, 2):
369 j, k = self.other[i]
370 if directions[i] is None:
371 missing += 1
372 if miller[j] is not None and miller[k] is not None:
373 directions[i] = reduceindex(cross(miller[j],
374 miller[k]))
375 change = True
376 if self.debug >= 2:
377 print(
378 "Calculating directions[%d] from miller "
379 "indices" % i)
380 if miller[i] is None:
381 missing += 1
382 if directions[j] is not None and directions[k] is not None:
383 miller[i] = reduceindex(cross(directions[j],
384 directions[k]))
385 change = True
386 if self.debug >= 2:
387 print("Calculating miller[%d] from directions" % i)
388 if missing:
389 raise ValueError(
390 "Specification of directions and miller indices is incomplete.")
391 # Make sure that everything is Numeric arrays
392 self.directions = np.array(directions)
393 self.miller = np.array(miller)
394 # Check for zero-volume unit cell
395 if abs(np.linalg.det(self.directions)) < 1e-10:
396 raise ValueError(
397 "The direction vectors are linearly dependent "
398 "(unit cell volume would be zero)")
399 # Check for left-handed coordinate system
400 if np.linalg.det(self.directions) < 0:
401 print("WARNING: Creating a left-handed coordinate system!")
402 self.miller = -self.miller
403 self.handedness = -1
404 else:
405 self.handedness = 1
406 # Now check for consistency
407 for i in (0, 1, 2):
408 (j, k) = self.other[i]
409 m = reduceindex(self.handedness *
410 cross(self.directions[j], self.directions[k]))
411 if sum(np.not_equal(m, self.miller[i])):
412 print(
413 "ERROR: Miller index %s is inconsisten with "
414 "directions %d and %d" % (i, j, k))
415 print("Miller indices:")
416 print(str(self.miller))
417 print("Directions:")
418 print(str(self.directions))
419 raise ValueError(
420 "Inconsistent specification of miller indices and "
421 "directions.")
423 def print_directions_and_miller(self, txt=""):
424 "Print direction vectors and Miller indices."
425 print(f"Direction vectors of unit cell{txt}:")
426 for i in (0, 1, 2):
427 print(" ", self.directions[i])
428 print(f"Miller indices of surfaces{txt}:")
429 for i in (0, 1, 2):
430 print(" ", self.miller[i])
433class MillerInfo:
434 """Mixin class to provide information about Miller indices."""
436 def miller_to_direction(self, miller):
437 """Returns the direction corresponding to a given Miller index."""
438 return np.dot(miller, self.millerbasis)
441class Lattice(Atoms, MillerInfo):
442 """List of atoms initially containing a regular lattice of atoms.
444 A part from the usual list of atoms methods this list of atoms type
445 also has a method, `miller_to_direction`, used to convert from Miller
446 indices to directions in the coordinate system of the lattice.
447 """
450# Helper functions
451def cross(a, b):
452 """The cross product of two vectors."""
453 return np.array((a[1] * b[2] - b[1] * a[2],
454 a[2] * b[0] - b[2] * a[0],
455 a[0] * b[1] - b[0] * a[1]))
458def reduceindex(M):
459 """Reduce Miller index to the lowest equivalent integers."""
460 oldM = M
461 g = math.gcd(M[0], M[1])
462 h = math.gcd(g, M[2])
463 while h != 1:
464 if h == 0:
465 raise ValueError(
466 "Division by zero: Are the miller indices linearly dependent?")
467 M = M // h
468 g = math.gcd(M[0], M[1])
469 h = math.gcd(g, M[2])
470 if np.dot(oldM, M) > 0:
471 return M
472 else:
473 return -M