Coverage for /builds/kinetik161/ase/ase/transport/stm.py: 10.00%
110 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1# flake8: noqa
2import time
4import numpy as np
6from ase.parallel import world
7from ase.transport.greenfunction import GreenFunction
8from ase.transport.selfenergy import LeadSelfEnergy
9from ase.transport.tools import dagger
12class STM:
13 def __init__(self, h1, s1, h2, s2, h10, s10, h20, s20,
14 eta1, eta2, w=0.5, pdos=[], logfile=None):
15 """XXX
17 1. Tip
18 2. Surface
20 h1: ndarray
21 Hamiltonian and overlap matrix for the isolated tip
22 calculation. Note, h1 should contain (at least) one
23 principal layer.
25 h2: ndarray
26 Same as h1 but for the surface.
28 h10: ndarray
29 periodic part of the tip. must include two and only
30 two principal layers.
32 h20: ndarray
33 same as h10, but for the surface
35 The s* are the corresponding overlap matrices. eta1, and eta
36 2 are (finite) infinitesimals. """
38 self.pl1 = len(h10) // 2 # principal layer size for the tip
39 self.pl2 = len(h20) // 2 # principal layer size for the surface
40 self.h1 = h1
41 self.s1 = s1
42 self.h2 = h2
43 self.s2 = s2
44 self.h10 = h10
45 self.s10 = s10
46 self.h20 = h20
47 self.s20 = s20
48 self.eta1 = eta1
49 self.eta2 = eta2
50 self.w = w # asymmetry of the applied bias (0.5=>symmetric)
51 self.pdos = []
52 self.log = logfile
54 def initialize(self, energies, bias=0):
55 """
56 energies: list of energies
57 for which the transmission function should be evaluated.
58 bias.
59 Will precalculate the surface greenfunctions of the tip and
60 surface.
61 """
62 self.bias = bias
63 self.energies = energies
64 nenergies = len(energies)
65 pl1, pl2 = self.pl1, self.pl2
66 nbf1, nbf2 = len(self.h1), len(self.h2)
68 # periodic part of the tip
69 hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1]
70 hs1_dij = self.h10[:pl1, pl1:2 * pl1], self.s10[:pl1, pl1:2 * pl1]
71 # coupling between per. and non. per part of the tip
72 h1_im = np.zeros((pl1, nbf1), complex)
73 s1_im = np.zeros((pl1, nbf1), complex)
74 h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij
75 hs1_dim = [h1_im, s1_im]
77 # periodic part the surface
78 hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2]
79 hs2_dij = self.h20[pl2:2 * pl2, :pl2], self.s20[pl2:2 * pl2, :pl2]
80 # coupling between per. and non. per part of the surface
81 h2_im = np.zeros((pl2, nbf2), complex)
82 s2_im = np.zeros((pl2, nbf2), complex)
83 h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij
84 hs2_dim = [h2_im, s2_im]
86 # tip and surface greenfunction
87 self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1)
88 self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2)
89 self.greenfunction1 = GreenFunction(self.h1 - self.bias * self.w * self.s1, self.s1,
90 [self.selfenergy1], self.eta1)
91 self.greenfunction2 = GreenFunction(self.h2 - self.bias * (self.w - 1) * self.s2, self.s2,
92 [self.selfenergy2], self.eta2)
94 # Shift the bands due to the bias.
95 bias_shift1 = -bias * self.w
96 bias_shift2 = -bias * (self.w - 1)
97 self.selfenergy1.set_bias(bias_shift1)
98 self.selfenergy2.set_bias(bias_shift2)
100 # tip and surface greenfunction matrices.
101 nbf1_small = nbf1 # XXX Change this for efficiency in the future
102 nbf2_small = nbf2 # XXX -||-
103 coupling_list1 = list(range(nbf1_small)) # XXX -||-
104 coupling_list2 = list(range(nbf2_small)) # XXX -||-
105 self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex)
106 self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex)
108 for e, energy in enumerate(self.energies):
109 if self.log is not None: # and world.rank == 0:
110 T = time.localtime()
111 self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) +
112 '%d, %d, %02f\n' % (world.rank, e, energy))
113 gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
114 gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)
116 gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
117 gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)
119 self.gft1_emm[e] = gft1_mm
120 self.gft2_emm[e] = gft2_mm
122 if self.log is not None and world.rank == 0:
123 self.log.flush()
125 def get_transmission(self, v_12, v_11_2=None, v_22_1=None):
126 """XXX
128 v_12:
129 coupling between tip and surface
130 v_11_2:
131 correction to "on-site" tip elements due to the
132 surface (eq.16). Is only included to first order.
133 v_22_1:
134 corretion to "on-site" surface elements due to he
135 tip (eq.17). Is only included to first order.
136 """
138 dim0 = v_12.shape[0]
139 dim1 = v_12.shape[1]
141 nenergies = len(self.energies)
142 T_e = np.empty(nenergies, float)
143 v_21 = dagger(v_12)
144 for e, energy in enumerate(self.energies):
145 gft1 = self.gft1_emm[e]
146 if v_11_2 is not None:
147 gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2))
148 gf1 += gft1 # eq. 16
149 else:
150 gf1 = gft1
152 gft2 = self.gft2_emm[e]
153 if v_22_1 is not None:
154 gf2 = np.dot(v_22_1, np.dot(gft2, v_22_1))
155 gf2 += gft2 # eq. 17
156 else:
157 gf2 = gft2
159 a1 = (gf1 - dagger(gf1))
160 a2 = (gf2 - dagger(gf2))
161 self.v_12 = v_12
162 self.a2 = a2
163 self.v_21 = v_21
164 self.a1 = a1
165 v12_a2 = np.dot(v_12, a2[:dim1])
166 v21_a1 = np.dot(v_21, a1[-dim0:])
167 self.v12_a2 = v12_a2
168 self.v21_a1 = v21_a1
169 T = -np.trace(np.dot(v12_a2[:, :dim1], v21_a1[:, -dim0:])) # eq. 11
170 assert abs(T.imag).max() < 1e-14
171 T_e[e] = T.real
172 self.T_e = T_e
173 return T_e
175 def get_current(self, bias, v_12, v_11_2=None, v_22_1=None):
176 """Very simple function to calculate the current.
178 Asummes zero temperature.
180 bias: type? XXX
181 bias voltage (V)
183 v_12: XXX
184 coupling between tip and surface.
186 v_11_2:
187 correction to onsite elements of the tip
188 due to the potential of the surface.
189 v_22_1:
190 correction to onsite elements of the surface
191 due to the potential of the tip.
192 """
193 energies = self.energies
194 T_e = self.get_transmission(v_12, v_11_2, v_22_1)
195 bias_window = sorted(-np.array([bias * self.w, bias * (self.w - 1)]))
196 self.bias_window = bias_window
197 # print 'bias window', np.around(bias_window,3)
198 # print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
199 # print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
200 i1 = sum(energies < bias_window[0])
201 i2 = sum(energies < bias_window[1])
202 step = 1
203 if i2 < i1:
204 step = -1
206 return np.sign(bias) * \
207 np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])