Coverage for /builds/kinetik161/ase/ase/cluster/base.py: 54.02%
87 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1import numpy as np
4class ClusterBase:
5 def get_layer_distance(self, miller, layers=1, tol=1e-9, new=True):
6 """Returns the distance between planes defined by the given miller
7 index.
8 """
9 if new:
10 # Create lattice sample
11 size = np.zeros(3, int)
12 for i, m in enumerate(miller):
13 size[i] = np.abs(m) + 2
15 m = len(self.atomic_basis)
16 p = np.zeros((size.prod() * m, 3))
17 for h in range(size[0]):
18 for k in range(size[1]):
19 for l_ in range(size[2]):
20 i = h * (size[1] * size[2]) + k * size[2] + l_
21 p[m * i:m * (i + 1)] = np.dot([h, k, l_] +
22 self.atomic_basis,
23 self.lattice_basis)
25 # Project lattice positions on the miller direction.
26 n = self.miller_to_direction(miller)
27 d = np.sum(n * p, axis=1)
28 if np.all(d < tol):
29 # All negative incl. zero
30 d = np.sort(np.abs(d))
31 reverse = True
32 else:
33 # Some or all positive
34 d = np.sort(d[d > -tol])
35 reverse = False
36 d = d[np.concatenate((d[1:] - d[:-1] > tol, [True]))]
37 d = d[1:] - d[:-1]
39 # Look for a pattern in the distances between layers. A pattern is
40 # accepted if more than 50 % of the distances obeys it.
41 pattern = None
42 for i in range(len(d)):
43 for n in range(1, (len(d) - i) // 2 + 1):
44 if np.all(np.abs(d[i:i + n] - d[i + n:i + 2 * n]) < tol):
45 counts = 2
46 for j in range(i + 2 * n, len(d), n):
47 if np.all(np.abs(d[j:j + n] - d[i:i + n]) < tol):
48 counts += 1
49 if counts * n * 1.0 / len(d) > 0.5:
50 pattern = d[i:i + n].copy()
51 break
52 if pattern is not None:
53 break
55 if pattern is None:
56 raise RuntimeError('Could not find layer distance for the ' +
57 '(%i,%i,%i) surface.' % miller)
58 if reverse:
59 pattern = pattern[::-1]
61 if layers < 0:
62 pattern = -1 * pattern[::-1]
63 layers *= -1
65 map = np.arange(layers - layers % 1 + 1, dtype=int) % len(pattern)
66 return pattern[map][:-1].sum() + layers % 1 * pattern[map][-1]
68 n = self.miller_to_direction(miller)
69 d1 = d2 = 0.0
71 d = np.abs(np.sum(n * self.lattice_basis, axis=1))
72 mask = np.greater(d, 1e-10)
73 if mask.sum() > 0:
74 d1 = np.min(d[mask])
76 if len(self.atomic_basis) > 1:
77 atomic_basis = np.dot(self.atomic_basis, self.lattice_basis)
78 d = np.sum(n * atomic_basis, axis=1)
79 s = np.sign(d)
80 d = np.abs(d)
81 mask = np.greater(d, 1e-10)
82 if mask.sum() > 0:
83 d2 = np.min(d[mask])
84 s2 = s[mask][np.argmin(d[mask])]
86 if d2 > 1e-10:
87 if s2 < 0 and d1 - d2 > 1e-10:
88 d2 = d1 - d2
89 elif s2 < 0 and d2 - d1 > 1e-10:
90 d2 = 2 * d1 - d2
91 elif s2 > 0 and d2 - d1 > 1e-10:
92 d2 = d2 - d1
94 if np.abs(d1 - d2) < 1e-10:
95 ld = np.array([d1])
96 elif np.abs(d1 - 2 * d2) < 1e-10:
97 ld = np.array([d2])
98 else:
99 assert d1 > d2, 'Something is wrong with the layer distance.'
100 ld = np.array([d2, d1 - d2])
101 else:
102 ld = np.array([d1])
104 if len(ld) > 1:
105 if layers < 0:
106 ld = np.array([-ld[1], -ld[0]])
107 layers *= -1
109 map = np.arange(layers - (layers % 1), dtype=int) % len(ld)
110 r = ld[map].sum() + (layers % 1) * ld[np.abs(map[-1] - 1)]
111 else:
112 r = ld[0] * layers
114 return r
116 def miller_to_direction(self, miller, norm=True):
117 """Returns the direction corresponding to a given Miller index."""
118 d = np.dot(miller, self.resiproc_basis)
119 if norm:
120 d = d / np.linalg.norm(d)
121 return d