Coverage for /builds/kinetik161/ase/ase/cluster/icosahedron.py: 98.25%

57 statements  

« prev     ^ index     » next       coverage.py v7.2.7, created at 2023-12-10 11:04 +0000

1import numpy as np 

2 

3from ase import Atoms 

4from ase.cluster.util import get_element_info 

5 

6 

7def Icosahedron(symbol, noshells, latticeconstant=None): 

8 """ 

9 Returns a cluster with the icosahedra symmetry. 

10 

11 Parameters 

12 ---------- 

13 symbol : str or int 

14 The chemical symbol (or atomic number) of the element. 

15 

16 noshells : int 

17 The number of shells (>= 1). 

18 

19 latticeconstant : float, optional 

20 The lattice constant. If not given, then it is extracted from 

21 `ase.data`. 

22 """ 

23 

24 symbol, atomic_number, latticeconstant = get_element_info( 

25 symbol, latticeconstant) 

26 

27 # Interpret noshells 

28 if noshells < 1: 

29 raise ValueError( 

30 "The number of shells must be equal to or greater than one.") 

31 

32 t = 0.5 + np.sqrt(5) / 2.0 

33 

34 verticies = np.array([[t, 0., 1.], 

35 [t, 0., -1.], 

36 [-t, 0., 1.], 

37 [-t, 0., -1.], 

38 [1., t, 0.], 

39 [-1., t, 0.], 

40 [1., -t, 0.], 

41 [-1., -t, 0.], 

42 [0., 1., t], 

43 [0., -1., t], 

44 [0., 1., -t], 

45 [0., -1., -t]]) 

46 

47 positions = [] 

48 tags = [] 

49 positions.append(np.zeros(3)) 

50 tags.append(1) 

51 

52 for n in range(1, noshells): 

53 # Construct square edges (6) 

54 for k in range(0, 12, 2): 

55 v1 = verticies[k] 

56 v2 = verticies[k + 1] 

57 for i in range(n + 1): 

58 pos = i * v1 + (n - i) * v2 

59 positions.append(pos) 

60 tags.append(n + 1) 

61 

62 # Construct triangle planes (12) 

63 if n > 1: 

64 map = {0: (8, 9), 1: (10, 11), 

65 2: (8, 9), 3: (10, 11), 

66 4: (0, 1), 5: (2, 3), 

67 6: (0, 1), 7: (2, 3), 

68 8: (4, 5), 9: (6, 7), 

69 10: (4, 5), 11: (6, 7)} 

70 

71 for k in range(0, 12): 

72 v0 = n * verticies[k] 

73 v1 = (verticies[map[k][0]] - verticies[k]) 

74 v2 = (verticies[map[k][1]] - verticies[k]) 

75 for i in range(n): 

76 for j in range(n - i): 

77 if i == 0 and j == 0: 

78 continue 

79 pos = v0 + i * v1 + j * v2 

80 positions.append(pos) 

81 tags.append(n + 1) 

82 

83 # Fill missing triangle planes (8) 

84 if n > 2: 

85 map = {0: (9, 6, 8, 4,), 

86 1: (11, 6, 10, 4), 

87 2: (9, 7, 8, 5,), 

88 3: (11, 7, 10, 5)} 

89 

90 for k in range(0, 4): 

91 v0 = n * verticies[k] 

92 v1 = (verticies[map[k][0]] - verticies[k]) 

93 v2 = (verticies[map[k][1]] - verticies[k]) 

94 v3 = (verticies[map[k][2]] - verticies[k]) 

95 v4 = (verticies[map[k][3]] - verticies[k]) 

96 for i in range(1, n): 

97 for j in range(1, n - i): 

98 pos = v0 + i * v1 + j * v2 

99 positions.append(pos) 

100 tags.append(n + 1) 

101 pos = v0 + i * v3 + j * v4 

102 positions.append(pos) 

103 tags.append(n + 1) 

104 

105 # Scale the positions 

106 scaling_factor = latticeconstant / np.sqrt(2 * (1 + t**2)) 

107 positions = np.array(positions) * scaling_factor 

108 

109 symbols = [atomic_number] * len(positions) 

110 atoms = Atoms(symbols=symbols, positions=positions, tags=tags) 

111 atoms.center(about=(0, 0, 0)) 

112 atoms.cell[:] = 0 

113 return atoms