Coverage for /builds/kinetik161/ase/ase/optimize/gpmin/kernel.py: 71.25%
80 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1import numpy as np
2import numpy.linalg as la
5class Kernel():
6 def __init__(self):
7 pass
9 def set_params(self, params):
10 pass
12 def kernel(self, x1, x2):
13 """Kernel function to be fed to the Kernel matrix"""
15 def K(self, X1, X2):
16 """Compute the kernel matrix """
17 return np.block([[self.kernel(x1, x2) for x2 in X2] for x1 in X1])
20class SE_kernel(Kernel):
21 """Squared exponential kernel without derivatives"""
23 def __init__(self):
24 Kernel.__init__(self)
26 def set_params(self, params):
27 """Set the parameters of the squared exponential kernel.
29 Parameters:
31 params: [weight, l] Parameters of the kernel:
32 weight: prefactor of the exponential
33 l : scale of the kernel
34 """
35 self.weight = params[0]
36 self.l = params[1]
38 def squared_distance(self, x1, x2):
39 """Returns the norm of x1-x2 using diag(l) as metric """
40 return np.sum((x1 - x2) * (x1 - x2)) / self.l**2
42 def kernel(self, x1, x2):
43 """ This is the squared exponential function"""
44 return self.weight**2 * np.exp(-0.5 * self.squared_distance(x1, x2))
46 def dK_dweight(self, x1, x2):
47 """Derivative of the kernel respect to the weight """
48 return 2 * self.weight * np.exp(-0.5 * self.squared_distance(x1, x2))
50 def dK_dl(self, x1, x2):
51 """Derivative of the kernel respect to the scale"""
52 return self.kernel * la.norm(x1 - x2)**2 / self.l**3
55class SquaredExponential(SE_kernel):
56 """Squared exponential kernel with derivatives.
57 For the formulas see Koistinen, Dagbjartsdottir, Asgeirsson, Vehtari,
58 Jonsson.
59 Nudged elastic band calculations accelerated with Gaussian process
60 regression. Section 3.
62 Before making any predictions, the parameters need to be set using the
63 method SquaredExponential.set_params(params) where the parameters are a
64 list whose first entry is the weight (prefactor of the exponential) and
65 the second is the scale (l).
67 Parameters:
69 dimensionality: The dimensionality of the problem to optimize, typically
70 3*N where N is the number of atoms. If dimensionality is
71 None, it is computed when the kernel method is called.
73 Attributes:
74 ----------------
75 D: int. Dimensionality of the problem to optimize
76 weight: float. Multiplicative constant to the exponenetial kernel
77 l : float. Length scale of the squared exponential kernel
79 Relevant Methods:
80 ----------------
81 set_params: Set the parameters of the Kernel, i.e. change the
82 attributes
83 kernel_function: Squared exponential covariance function
84 kernel: covariance matrix between two points in the manifold.
85 Note that the inputs are arrays of shape (D,)
86 kernel_matrix: Kernel matrix of a data set to itself, K(X,X)
87 Note the input is an array of shape (nsamples, D)
88 kernel_vector Kernel matrix of a point x to a dataset X, K(x,X).
90 gradient: Gradient of K(X,X) with respect to the parameters of
91 the kernel i.e. the hyperparameters of the Gaussian
92 process.
93 """
95 def __init__(self, dimensionality=None):
96 self.D = dimensionality
97 SE_kernel.__init__(self)
99 def kernel_function(self, x1, x2):
100 """ This is the squared exponential function"""
101 return self.weight**2 * np.exp(-0.5 * self.squared_distance(x1, x2))
103 def kernel_function_gradient(self, x1, x2):
104 """Gradient of kernel_function respect to the second entry.
105 x1: first data point
106 x2: second data point
107 """
108 prefactor = (x1 - x2) / self.l**2
109 # return prefactor * self.kernel_function(x1,x2)
110 return prefactor
112 def kernel_function_hessian(self, x1, x2):
113 """Second derivatives matrix of the kernel function"""
114 P = np.outer(x1 - x2, x1 - x2) / self.l**2
115 prefactor = (np.identity(self.D) - P) / self.l**2
116 return prefactor
118 def kernel(self, x1, x2):
119 """Squared exponential kernel including derivatives.
120 This function returns a D+1 x D+1 matrix, where D is the dimension of
121 the manifold.
122 """
123 K = np.identity(self.D + 1)
124 K[0, 1:] = self.kernel_function_gradient(x1, x2)
125 K[1:, 0] = -K[0, 1:]
126 # K[1:,1:] = self.kernel_function_hessian(x1, x2)
127 P = np.outer(x1 - x2, x1 - x2) / self.l**2
128 K[1:, 1:] = (K[1:, 1:] - P) / self.l**2
129 # return np.block([[k,j2],[j1,h]])*self.kernel_function(x1, x2)
130 return K * self.kernel_function(x1, x2)
132 def kernel_matrix(self, X):
133 """This is the same method than self.K for X1=X2, but using the matrix
134 is then symmetric.
135 """
136 n, D = np.atleast_2d(X).shape
137 K = np.identity(n * (D + 1))
138 self.D = D
139 D1 = D + 1
141 # fill upper triangular:
142 for i in range(n):
143 for j in range(i + 1, n):
144 k = self.kernel(X[i], X[j])
145 K[i * D1:(i + 1) * D1, j * D1:(j + 1) * D1] = k
146 K[j * D1:(j + 1) * D1, i * D1:(i + 1) * D1] = k.T
147 K[i * D1:(i + 1) * D1, i * D1:(i + 1) * D1] = self.kernel(
148 X[i], X[i])
149 return K
151 def kernel_vector(self, x, X, nsample):
152 return np.hstack([self.kernel(x, x2) for x2 in X])
154 # ---------Derivatives--------
155 def dK_dweight(self, X):
156 """Return the derivative of K(X,X) respect to the weight """
157 return self.K(X, X) * 2 / self.weight
159 # ----Derivatives of the kernel function respect to the scale ---
160 def dK_dl_k(self, x1, x2):
161 """Returns the derivative of the kernel function respect to l"""
162 return self.squared_distance(x1, x2) / self.l
164 def dK_dl_j(self, x1, x2):
165 """Returns the derivative of the gradient of the kernel function
166 respect to l
167 """
168 prefactor = -2 * (1 - 0.5 * self.squared_distance(x1, x2)) / self.l
169 return self.kernel_function_gradient(x1, x2) * prefactor
171 def dK_dl_h(self, x1, x2):
172 """Returns the derivative of the hessian of the kernel function respect
173 to l
174 """
175 I = np.identity(self.D)
176 P = np.outer(x1 - x2, x1 - x2) / self.l**2
177 prefactor = 1 - 0.5 * self.squared_distance(x1, x2)
178 return -2 * (prefactor * (I - P) - P) / self.l**3
180 def dK_dl_matrix(self, x1, x2):
181 k = np.asarray(self.dK_dl_k(x1, x2)).reshape((1, 1))
182 j2 = self.dK_dl_j(x1, x2).reshape(1, -1)
183 j1 = self.dK_dl_j(x2, x1).reshape(-1, 1)
184 h = self.dK_dl_h(x1, x2)
185 return np.block([[k, j2], [j1, h]]) * self.kernel_function(x1, x2)
187 def dK_dl(self, X):
188 """Return the derivative of K(X,X) respect of l"""
189 return np.block([[self.dK_dl_matrix(x1, x2) for x2 in X] for x1 in X])
191 def gradient(self, X):
192 """Computes the gradient of matrix K given the data respect to the
193 hyperparameters. Note matrix K here is self.K(X,X).
194 Returns a 2-entry list of n(D+1) x n(D+1) matrices
195 """
196 return [self.dK_dweight(X), self.dK_dl(X)]