Coverage for /builds/kinetik161/ase/ase/stress.py: 83.72%
43 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-12-10 11:04 +0000
1import numpy as np
3# The indices of the full stiffness matrix of (orthorhombic) interest
4voigt_notation = [(0, 0), (1, 1), (2, 2), (1, 2), (0, 2), (0, 1)]
7def get_elasticity_tensor(atoms, h=0.001, verbose=False):
8 """
10 1 dE dσ_ij
11 C = - ----------- = -----
12 ijkl V dε_ij dε_kl dε_kl
14 """
15 cell0 = atoms.cell.copy()
16 C_ijkl = np.zeros((3, 3, 3, 3))
17 f = voigt_6_to_full_3x3_stress
18 for k in range(3):
19 for l in range(3):
20 strain = np.eye(3)
21 strain[k, l] += h
22 atoms.set_cell(cell0 @ strain, scale_atoms=True)
23 stressp_ij = f(atoms.get_stress())
24 strain[k, l] -= 2 * h
25 atoms.set_cell(cell0 @ strain, scale_atoms=True)
26 stressm_ij = f(atoms.get_stress())
27 C_ijkl[k, l] = (stressp_ij - stressm_ij) / (2 * h)
29 if verbose:
30 for i in range(3):
31 for j in range(3):
32 print(f'C_ijkl[{i}, {j}] =')
33 for k in range(3):
34 for l in range(3):
35 print(round(C_ijkl[i, j, k, l], 2), end=' ')
36 print()
37 print()
38 print()
40 return C_ijkl
43def full_3x3_to_voigt_6_index(i, j):
44 if i == j:
45 return i
46 return 6 - i - j
49def voigt_6_to_full_3x3_strain(strain_vector):
50 """
51 Form a 3x3 strain matrix from a 6 component vector in Voigt notation
52 """
53 e1, e2, e3, e4, e5, e6 = np.transpose(strain_vector)
54 return np.transpose([[1.0 + e1, 0.5 * e6, 0.5 * e5],
55 [0.5 * e6, 1.0 + e2, 0.5 * e4],
56 [0.5 * e5, 0.5 * e4, 1.0 + e3]])
59def voigt_6_to_full_3x3_stress(stress_vector):
60 """
61 Form a 3x3 stress matrix from a 6 component vector in Voigt notation
62 """
63 s1, s2, s3, s4, s5, s6 = np.transpose(stress_vector)
64 return np.transpose([[s1, s6, s5],
65 [s6, s2, s4],
66 [s5, s4, s3]])
69def full_3x3_to_voigt_6_strain(strain_matrix):
70 """
71 Form a 6 component strain vector in Voigt notation from a 3x3 matrix
72 """
73 strain_matrix = np.asarray(strain_matrix)
74 return np.transpose([strain_matrix[..., 0, 0] - 1.0,
75 strain_matrix[..., 1, 1] - 1.0,
76 strain_matrix[..., 2, 2] - 1.0,
77 strain_matrix[..., 1, 2] + strain_matrix[..., 2, 1],
78 strain_matrix[..., 0, 2] + strain_matrix[..., 2, 0],
79 strain_matrix[..., 0, 1] + strain_matrix[..., 1, 0]])
82def full_3x3_to_voigt_6_stress(stress_matrix):
83 """
84 Form a 6 component stress vector in Voigt notation from a 3x3 matrix
85 """
86 stress_matrix = np.asarray(stress_matrix)
87 return np.transpose([stress_matrix[..., 0, 0],
88 stress_matrix[..., 1, 1],
89 stress_matrix[..., 2, 2],
90 (stress_matrix[..., 1, 2] +
91 stress_matrix[..., 2, 1]) / 2,
92 (stress_matrix[..., 0, 2] +
93 stress_matrix[..., 2, 0]) / 2,
94 (stress_matrix[..., 0, 1] +
95 stress_matrix[..., 1, 0]) / 2])